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ABSTRACT

The online computer system in use at the 15' bubble chamber
is described, with emphasis on the program. The system is used
to log and display data about the bubble chamber and its support
systems, and has been very useful in improving both the
efficiency of the chamber operation and the physics value of the
bubble chamber pictures. This note is sufficiently detailed to
serve as a useful guide to the online program. Experiences and
techniques of possible value for other small computer projects
are given. Paragrapﬁs of more general interest have been flagged

for the reader who is uninterested in program details.
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THE 15 FOOT BUBBLE CHAMBER ONLINE COMPUTER SYSTEM

I. INTRODUCTION

This note describes the onIine'chputer system in use for
data logging at the Fermilab 15' bubble chamber. It is intended
to serve two audiences: those wishing to obtain a general idea
of what the system does; and to give detailed descriptions of the
program so that an experienced PDP-11 assembly language programmer,
by using this note and the actual program listings, could have
enough information to either modify this program or borrow some
of the program's features for another project. To spare the
former group unnecessary detail, I have marked the paragraphs
which are relevent to a general overview of the computer system
with a * in the left margin. Sections I through IV, XII and XIII
are the most important for this overview.

Most of the note is concerned with what the online program
does and how it does it. Only a brief description of the computer
hardware, devices interfaced to the computer, systems programs
supplied by Digital Equipment Corporation and Fermilab computer
group programs will be given, but most of these are covered by
the references appearing at the end of the paper. Operating
instructions and commands to the outline program also are not

given here, they are kept in a notebook in the bubble chamber

control room.
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IT. PURPOSE OF THE ONLINE COMPUTER SYSTEM

The primary purpose of the computer system is to gather data
about the 15' bubble chamber, store it for later use, and display
selected data to the bubble chamber operators. Most of this data
is of interest only to the bubble chamber operators, but some data
is expected to be of interest to the physicists running an
experiment in the 15' bubble chamber. Such data includes: the
date, time, roll number, frame number, bubble chamber magnet current,
chamber temperature, chamber pressure and pressure drop, and number
of hadron beam particles entering the chamber; all of which are
recorded on magnetic tape each time the chamber is pulsed.

Data of interest to the operators includes more detailed
information about the bubble chamber itself: temperatures and
pressures at several points inside the chamber, at the piston rings
and under the piston, cooling loop parameters, etc.; and information
about the bubble chamber support systems, such as the superconduc-
ting magnet and helium liquifier, hydrogen refrigerator, expan-
sion system, and gas and liguid storage tanks. Data of interest
in these support systems includes temperatures, pressures, flow
rates, liquid levels, valve settings, etc. Having this information
available enables the operators to run the chamber more efficiently
and economically.

Using a computer to log this data has several distinct advan-
tages compared to logging it manually. Sets of readings can be
taken more frequently and on a regular time basis. Such reading
continueg automatically, even when all the operating crew is

involved with some chamber problem. Data recorded during such
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problem times are frequently very important in understanding the
malfunction and would probably not be taken without the computer
because the crew is busy working on the probiem. Computer read-
ings are usually more accurate and the computer can quickly convert
readings to the appropriate physical units. The computer can
average several related readings taken at (essentially) the same
time, for example, the several vapor pressure thermometers inside
the chamber volume can be averaged to give the average chamber
temperature. Averages can also be made of all the readings of a
particular piece of data taken in specified time periods. Another
job that the computer can do well is to calculate the rate of

change of a particular reading with time. This information can

be extremely useful, one example is the cooling rate of the

bubble chamber windows and chamber body during chamber cooldown
from room to liquid hydrogen temperatures. Too high a cooldown

rate could damage the glass bubble chamber windows. Another example,
see Figure 1, is the level in the liquid helium storage dewar.
During magnet operation, ligquid helium is continuously added to the
dewar by a liquifier and liquid from the dewar is transferred to the
magnet periodically when it is needed. Reading the helium level in
the dewar shows only how much liquid is in the dewar, the rate of
change of the level tells you how much excess liquid is being made
or, if negative, how long the magnet can be run under the present
conditions. The helium liquifier can be tuned up using this rate
information. Studying many level readings taken over a period of
time will give the period and quantity of the batch liquid transfers
to the magnet. The computer can store a large amount of data, some

of it up to three weeks old, on the disk which is then immediately
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available for the operator to study. Data can be stored on
magnetic tape for indefinite periods and retrieved offline on a
large computer. Such magnetic tapes are far less bulky then
recording the same amount of information on paper. Finally, the
computer can make listings of selected data, including data
acquired up to three weeks earlier, and make graphs of such data
at the operator's request.

In short, the computer can save operators time by recording,
analyzing, and displaying data and record #t more frequently,
accurately, regularly and usefully than it could be done by hand.
In my experience at the 15' bubble chamber, there has been a real
need for data which is both accurate and quickly available to
improve both bubble chamber track quality and the efficiency of
bubble chamber operations.

At the present time, the computer has no control functions
over the bubble chamber. There are several reasons for this.

Early in the design of the computer system, it was decided not to make
operation of the chamber dependent upon the computer to the extent
of requiring the computer system to be up before the chamber could
run. Almost all simple routine control operations at the 15
bubble chamber are done by commercial air system controllers. More
complicated control operations have long cycle times and are easily
handled by the operators once they have accurate data on which to
base their decisions, so the first priority for the computer system
has been to provide that data. Now that the data logging features
of the computer system are almost completely implemented, some
control functions for the computer may be advisable and these are

discussed in Section VII.
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ITI. HARDWARE

* The basic hardware used for the 15' bubble chamber on line
system is a rather typical Bison system provided by the Fermilab
Computing Department. The computer is a Digital Equipment
Corporation (DEC) PDP-11/20 with extended arithmetic element (EAE)
and 28 K (K=1024) words of memory, the maximum possible on a
PDP-11/20. Major DEC supplied peripherals include a 1.2 million
word cartridge disk, 800 bits per inch 9 track magnetic tape unit,
dual Dectape unit and a 30 character per second Decwriter terminal.
The Computing Department also supplied a memory display scope, GOd
lines per minute printer/plotter, Bison interrupt and gate céntrol
unit, and CAMAC branch driver, together with the necessary inter-
faces and controllers. A more detailed list of the hardware
supplied by the Fermilab Computing Department is given in Table I.

* The PDP-11/20 is a small computer with 16 bit words and a typical
instruction execution time of 5 microseconds. It has powerful. input-
output features which enable it to handle data transfers very quickly
and with a minimum delay to the computing which occurs in parallel.
Single precision integer arithmetic operations, including multiplication
and division (with the EAE), are quickly done and fairly easy to
program, but multiple precision operations take longer and are more
difficult to program. Floating point arithmetic hardware is not
available for a PDP-11/20 and floating point software routines vaxke
considerable memory space and are rather slow. The speéd of the
computer is more than ample for almost all of the demands at the
bubble chamber. The exception is in the analysis of data during the

chamber pulse, as described in Section VI, but with careful programming
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the computer execution speed is adequate even for this job. The
major shortcoming of the PDP-11/20 has been that the memory is
limited to 28 K words, and considerable programming effort has
been necessary to fit the program into this available memory, as
described in the next section. More information about the computer
can be found in DEC supplied 1iteraturel.

With the computer hardware as outlined above, there are four
places where data, programs, etc., can be stored and these are
given in Table II in order of access time, with the fastest device
first. Both the disk and the Dectapes are hardware organized into
256 word blocks, so the number of such blocks is given for the other
storage devices on the bubble chamber system for comparison. Since
the hardware block size on the disk is 256 words, this block size is
used throughout the online program for data storage. General data
buffers in memory are 256 words long and data is written on the
magnetic tape in 256 word records. The first word of each block
contains an identifying code, while the next three words contain
the date and time the data was created in the usual PDP-11 format.
Usually, the remaining 252 words contain data, see Section VIT for
details. The disk is used by the online program to hold a large
number of data, control, and constants blocks which can be recalled
in a very short time (less than .125 seconds per block). The
magnetic tape is used to log data for later offline analysis. To
obtain more disk space for the online program, a second disk cartridge
is used to hold the complete set of disk operating system (DOS) pro-
grams and ‘for program development. The Dectapes are not used directly

by the online program, but they are used to hold backup program source
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files and to transfer the online program load module between disk
cartridges.

® In addition to the hardware supplied by the Computing Department,
we have added additional peripherals to tailor the system to meet the

needs at the bubble chamber. These include a CRT terminal (identical
to those used on the Beam Line MAC systems),.a fast (25 microseconds
per data point) Datel analog to digital converter (A/D) with 128
multiplexed differential inputs (8 of which are sample and hold) and 8
digital to analog outputs, a digital voltmeter (DVM, 0.5 seconds per
data point) with 64 differential inputs, a Scanivalve air signal
scanner (0.167 seconds per data point) with 64 inputs, and a CAMAC
crate which contains modules for digital input and output as well as
8 channels of high speed scalars. The fast A/D is interfaced to the
PDP-11 unibus for both programmed and direct memory data transfers.
The CRT terminal, DVM, and CAMAC crate are interfaced to the unibus
for only programmed data transfers. The air signal scanner is not
connected directly to the unibus but the addressing commands and
address read back are transmitted through the CAMAC crate, the

analog pressure transducer data signal input goes to the fast A/D,
and the data ready interrupt is handled by the Bison interrupt and
gate control unit. Two bubble chamber thermocouple read out systems,
each for 100 inputs, are connected to the computer via the CAMAC
crate. Each system is based on a special DVM which converts the
thermocouple reading into temperature in degrees Kelvin. Normally,
the computer controls each thermocouple system, although manual
operation is also possible in case the computer is down. In addition
to other digital inputs, the CAMAC crate also handles the output from
the computer to a 16 digit display of key chamber expansion parameters.

* These special devices are listed in Table III. More information
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on the peripherals can be found in reference 2, from the manufacturer,

or in the manuals on file at the 15' bubble chamber.
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IV. PROGRAM INTRODUCTION

One of the most important considerations for the bubble chamber
computer system is that it should require as little operator action
as possible. Many bubble chamber operators have had little
experience with computers and frequently they are almost completely
occupied with the operation of the bubble chamber itself. To meet
this requirement, the program has been written to be as easy as
possible to restart after a program bomb-out or a power failure,
once it has been restarted all data read in and logging is automatic,
and the commands to display data, alter limit checks, etc., have
been kept as simple as possible.

To start the computer, the operator follows the instructions for
starting any PDP-11 (using DOS, the disk operating system3), which
include entering the current date and time and typing a few commands
on the Deécwriter. Once the program is started, the operator must
tell it where to start logging data on the magnetic tape, which
usually requires only one or two commands. All data read in and
logging will now begin and no further action is required of the
operator. The latest constants and control tableé needed by the
program are stored on the disk, so even recent changes are already
available and do not need to be re-entered by the operator. Also,
the data logged on the disk when the program was running previously
are immediately -available for display on operator command.

The read in of general data occurs automatically at predetermined
times using the internal computer clock. After the data has been
read in and processed, it is stored on the disk in a place determined
by the time when it was read in. The new data is written over older

data on the disk, so that the most recent data is available for the
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optional displays. The amount of recent data kept on the disk before
it is overwritten depends on the type of data. This varies from

4 hours worth (all fast data, see Sections V and VII) to 3 weeks
worth of the data averages. The data is also logged on magnetic

tape for later offline analysis. Every time the chamber is pulsed,
the computer is interrupted to read in data concerning that pulse.
After processing,this data is also stored on the disk and logged

on the magnetic tape. 1In this case, the last 1024 pulses are kept
on the disk as well as the average values which are saved for

three weeks.

In most cases, display of information to the bubble chamber
operator is optional and requires that a command be typed at the
control CRT keyboard. Because data logging is automatic and because
a considerable amount of data is stored on the disk, the operator
need not look at the data at the time it is read in, but has the
freedom to look at it several hours or even several weeks later.

The operator can choose from several ways of displaying the data.

He may select a list of many different data points at one selected

time to be output temporarily on the memory scope, or permanently

on the line printer. Or, he can select a fgWAdata points (up to 7)

and output a list either on the memory scope or line printer, of the
values at many successive times. It is also possible to display, on-the
memory scope, a plot of any data point vs. time, four small plots each
of a different data point vs. time, or a plot of one data point vs.
another data point using many pairs of readings, each taken at a |
different time. These plots can be copied from the memory scope to the

line printer/plotter, using the Bison hard copy facility4. - Better
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resolution plots of any data point vs. time may be made directly on
the line printer using the Bison routine PLOTB".
Another feature of the program is the ability to make changes
to the constants and control tables stored on the disk. The CRT
control terminal is particularly useful for this, because the
program has been written so that old values of the constants are
displayed on a line and the operator need only run the cursor over
to the value(s) he wishes to change and type in the changes.
(Similar to the edit facility used in some cases on the beam line
MAC systems.) This is especially useful for modifying the limit
checks (similar to watch lists on the MAC systems) which may be
frequently changed by the bubble chamber operators. In this case,
the lower limit, current value, and upper limit are displayed on a
line and the operator can change the limit(s) while having the
current value right in front of him.
The online program has been developed using the DOS (Disk
Operating System) provided by DEC (Digital Equipment Corporation).
DOS provides the tools necessary to create and modify programs,
translate them to machine language and run these programs. Additional
tools are provided to assist in these steps, all of which are de-
scribed in the literature which DEC provides3. When the online
program is running, a small portion of the DOS monitor (2655 words)
remains in memory to assist in input-output operations, provide error
diagnostics, assist in debugging programs, handle resetting the
computer clock, etc. It also provides an easy method of returning
to the DOS system when execution of the online program is terminated
by operator command.

The online program also uses the BSX multi-task supervisorG,
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developed here at Fermilab, to allocate the control of the computer
central processor (CPU) to the various tasks which make up the online
program.

Each task functions logically as a separate subprogram. Usually,
each task is waiting until an event variable (word in memory) becomes
non-zero (an orwait on a list of two or more event variables is also
possible). In this wait state, the task neither requires nor
receives control of the CPU. The event variable can be set non-
zero either by another task or by an interrupt service routine
which receives control of the CPU as a result of a hardware inter-
rupt. When a task's event variable is set, BSX gives control of
the CPU to that task, provided no task with higher priority also
requires the CPU. Once a task receives control of the CPU, it
retains it until a hardware interrupt occurs or the task reaches
the point where it must wait on the same (or another) event variable
for some action, external to the task, to occur. This later case
may occur, for example, when the task cannot proceed until a certain
amount of time has elapsed or a requested output is completed, or it
may occur when the task has finished its job and must wait until new
work is required of it. In the case of a hardware interrupt, the
registers being used by the task are saved and the CPU is then used
for the action specified by the interrupt. When the interrupt action
is over, BSX checks the higher priority tasks and gives control to
the highest priority task needing the CPU. Once all the higher
priority tasks are satisfied, BSX restores the registers and continues
the execution of the interrupted task at the point where it was
interrupted.

BSX thus provides the means to do "first things first" which is
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vital to any real time program, while still allowing low priority
jobs to be completed as soon as possible. BSX also handles the
input-output operations to the standard Bison devices: the magnetic
tape, disk, line printer, memory scope, DEC writer (output only),

and the control CRT terminal. The first four of these use the
standard DOS device drivers which require 1353 words of memory. I
have modified the Decwriter driver KBI@HT7, written here at Fermilab,
for the control CRT terminal used for the online program. A cut
down version of KBIOHT serves to drive the Decwriter for output only.
These two drivers require 830 words of memory. The BSX supervisor,
including the task talilie;, requires 1515 words of memory.

The online program currently contains 18 tasks, which are
supervised by BSX. Seven of these are required for the six standard
BISGN devices listed in the last paragraph. (The control CRT
terminal requires two tasks, one for keyboard input and the other
to output on the CRT screen.) These tasks are described in the
BISON program notesG. Five tasks are used for the reading, process-
ing and logging of general data and are described in Section V.

Three tasks are used to log and display the data gathered during

the chamber pulse, see Sections VI, VII and VIII. The clock task,
which is entéred every Ek/2 sSecond as a.result of 4m interfupt from the
internal programmable clockg, is responsible for initiating the read
in of general data and setting event variables after an interval of
time as requested by the other tasks in the program, see Section X.
The command task waits for the operator to enter a command on the
keyboard, interprets the command using the BISON subroutine CICONVg,

and then carries out the action requested by the command, see
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Sections XIII and IX. In the case of certain commands to list or
display data, which may take considerable time to complete, the
command task transfers the request to the low priority list task
and is then available to accept another command. The list task is
described in Section VIII.

Outside this task structure of the outline program are several
interrupt service routines which are executed as a result of hardware
interrupts. Most of these interrupts indicate that an input-output
operation has been completed and the service routines are rather
short and serve to notify a task that the operation has been
completed and perhaps initiate further I/O operations. Two

exceptions are: the clock interrupt service, CKINTR8

 which updates
the current date and time words stored in the monitor and starts
the clock task described above; and the pulse interrupt service
routine, described in Section VI, which reads in and processes

data during the bubble chamber pulse.

A major problem when trying to do a big job with a small
computer, such as a PDP-11/20, is to fit the program into the
available memory. The remainder of this Section will outline the
steps that have been taken to reduce memory requirements of the
bubble chamber online program and some additional information can
be found in Section X. For the last year, every major addition
to the program has required considerable effort to reduce the
memory required for the previous version of the program, before the
new feature could be added.

To use the available memory as efficiently as possible, the

online program is written entirely in Macro assembly language.

Assembly language generally creates one computer instruction for
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each line of code, while a higher language, such as Fortran, will
generate many computer instructions for each line of code. Assembly
language, since it corresponds closely to the actual hardware of the
computer, allows the programmer to make £full use of that hardware
to reduce both memory requirements and execution time for a given
- job. Fortran, especially for the PDP-1l computer, is slower and
uses much more memory than assembly language. Disadvantages of
assembly language programs are: since it coupled closely to the
actual hardware of the compufer, it is almost impossible to transfer
programs between different types of computers; it takes several
months for a programmer, even if he is proficieﬁt in Fortran program-
ming, to learn to write assembly language programs reasonably well;
and finally, even an experienced programmer takes far longer to
~generate and debug programs in assembly language than in Fortran.
(One estimate is that a good assembly language programmer averages
only three to five instructions per hour to generate and completely
debug a program.) In spite of these disadvantages, the need to

save memory has forced the use of assembly language programs
exclusively in the bubble chamber online program. Some Fortran

was used for small independent hardware check out programs, and in
early versions of the online program, before it had the current
capabilities which are described in this note.

Another restriction imposed by memory size and hardware limi-
tations has been to only store data as single precision integers.
Wwith the 16 bit word size on the PDP-11l, this allows a range of
-32,768 to +32,767. While this range contains ample precision for
almost all bubble chamber data, it does not lend itself directly

to convenient digplay of the information. Most of us are more
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familiar with a thermocouple temperature expressed as 123.4 degrees
Kelvin rather than just the integer 1234, and this becomes more
confusing if the rate of change of that thermocouple is expressed
as 10 rather than 1.0 deg/hr. The Bison output formatter program
FMTPUTlO, was modified to insert a decimal point in such data before
it is output. At the same time, the eight largest negative numbers
were reserved as error codes and the formatter modified to print
these out as *0 through *7. These error codes tell both the operator
and the program that the data is not present and that the value
should not be treated as valid data. Using different error codes
gives the operator an indication as to why the data is not present.

Numerical operations, such as converting the raw (as read in)
data to meaningful (inches, PSIA, etc.) units, calculating averages,
standard deviations, etc., have been coded using integer arithmetic.
Using the available software floating point arithmetic routines,
although easier to program, would have required more memory space.

The bubble chamber data which is available to the operator is
stored in 3584 blocks (917,504 words) on the disk. Clearly, it
would be impossible to store more than a very small percentage of
this data in the 112 blocks of memory available. Using the disk to
store data in this way, of course, required writing assembly language
programs to store data in the proper place on the disk and to retrieve
it on command.

A sizable number of control and constants blocks are also stored
on the disk and are used by the program to control its operations,
especially to systematically process the general data, as described

in Section V. Other disk blocks are used to hold temporary results,
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such #s the partial sums needed to calculate means and standard
deviations every two hours. Currently, 96 such blocks are used,
which are equivalent to a sizable fraction of the available memory.
Such blocks are read into memory only when they are needed.

Another group of blocks on the disk is used to hold list
specifications. These are equivalent to the WRITE and FORMAT
statements that one would use in Fortran to output a list of
variables. Putting these specifications on the disk allows for
the possibility of a large number of lists, each with considerable
titles to clearly show what data are kdéhng presentdd. The practical
limit to the number of lists possible is the time and patience of
the programmer in generating the blocks of list specifications.
Currently, 15 lists are implemented and 50 are possible, but this
limit could be easily increased if necessary. Twenty-eight
additional blocks on the disk are used to hold these list
specifications.

Whenever any of this information {data, control and constants,
temporary results, or list specifications) stored on the disk is
needed, it is read into a general buffer which has been reserved
by the task needing the information. The task, after using the
information, releases the general buffer so it can be used by other
tasks. Currently, about 13 general buffers, each 256 words long,
are needed for the online program to function smoothly. Most of
these general bufférs are generated in the remaining free memory
just after the online program execution is started. Before these
buffers are assigned, about 500 words of free space are needed for
a check to be sure that the proper disk cartridge for the online

program is in the disk unit. The online debugging system program
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(ODT)3, which is very useful in getting the program to work properly
after modifications, is always linked and loaded with the online
program. However, if it is not going to be used, the memory space
it occupies is assigned as general buffers during the online program
start-up procedure. Finally, the code for the start-up procedure,
see Section X, is all in one area, and this area is also used as a
general buffer after the program start-up phase is complete.
Currently, there is enough space for 17 general buffers, if ODT is
not needed.

Aside from increasing the amount of information storage
available far beyond the actual memory size, £his extensive use of
the disk has another benefit. The storage on the disk is permanent
and all the latest information is immediately available when the
online program is started up after a power failure, program bombout,
or other interruptions. Changing control blocks, constants blocks,
or list specifications on the disk can be done (see Section IX)
easily and quickly while the online program is running. Changing
the online program itself requires 10 minutes or longer and requires
stopping the execution of the online program (including data read
in and logging) for that period.

Much of the online program is needed to hahdle the read in, .
processing, and logging of data and this code must be in memory at
all times while the program is running. The portions of the program
which service the optional operator requests for lists, summaries,
plots, and modification of disk blocks are only needed when these
requests are made and have been overlayed3. Currently, there are
three overlay segments which share an area in memory about 4100

words long. If additional display features are desired, other
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overlay segments of similar length can easily be added without
using more memory. Use of the overlay feature allowed the program
to be increased by about 7700 words (the length of the two shorter
overlay segments) while only increasing the program memory
requirement by about 400 words (the overhead needed to handle the
overlaying).

Each of the steps outlined above has enabled the online program
to accomplish more jobs without increasing the actual memory required.
Some of the steps have had additional benefits, but all the steps
have required considerable programming effort which is not at all
apparent to someone unfamiliar with small computers. A larger, more
powerful, and more expensive computer would reduce the amount of
such programming effort, but in this case, the cost of the software
was less than that for more powerful hardware. Supervisors should
realize, however, that a considerable programming effort must be
invested to effectively use a small computer system. In this case,
about 15 full time months of my time was required for the program,

spread out over the last two years.
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V. READING AND PROCESSING OF GENERAL DATA

This section describes the handling of general data concerning
the bubble chamber and its support systems. This data is slowly
varying with time and uncertainties of a few seconds in the time
at which it is read make little practical difference. Taking
advantage of this fact, the data is read in and processed in large
blocks identified by the date and time the read in process started
and analyzed by subroutines which operate on all data in the block
in a systematic way. The control and constants blocks needed by
these subroutines to read in and analyze the data. are stored on
the disk and read into general purpose buffers only when they are
needed. Two general data blocks are handled in this manner. The
read in of the fast (slow) data block is initiated every 1/64 (1/16)
hour by the clock task. Each data block is organized with an
identifying word first, then a date word and two time words. The
read in (which may take considerable time) and initial analysis of
each block,; is handled by a separate task, so that these operations
can occur in parallel. The final analysis is done sequentially by
a.third task, which requires four general buffers and 1368 words of
memory. The read in tasks require 3675 words of memory (including
input device drivers, current values of the data for both blocks
and status bytes for each data word). When it is actiwve, each
read in task also requires two general buffers. Aside from saving
memory, keeping the control and constants blocks on the disk
allows permanent changes to be made in them while the online program
is running. This means, for example, that the read in of new pieces
of data can be added to either £he slow or fast data blocks without

interrupting the read in and processing of all the other data by
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the online program.

The data for these two blocks can come from any of the devices
listed in Table IV. The two thermocouple (TC) systems each
contain a special digital voltmeter which reads the rather low TC
voltages and converts to temperatures in degrees Kelvin. The
setting time for reading each TC is typically three seconds and
there are currently about 60 TC's on each system. The gold chromel
TC's are installed on the bubble chamber proper and the copper
constantan TC's, for historical reasons, are installed on the super-
conducting magnet, hydrogen refrigerator, and the room temperature
optics on the chamber. The digital volt meter (DVM) reads general
data with a settling time of 0.5 second. The high order octal
digit of the subaddress for the DVM determines one of four ranges
as given in Table V. The Fast A/D (Analog to Digital) converter
reads one general data point in about 25 useconds (not counting
program overhead time), with a least count of about 5 MV, and full
scale range of #10 volts. The Scanivalve reads sixty-four 3 to 15
psi air logic signals at the rate of six per second. These air
logic signals measure, for example, the amount various control
valves are open, pressures, flow rates, and liquid levels. Unlike
all the other devices here, which are random access, the Scanivalve
is sequential, so the 64 air logic signals are put sequentially
into 64 words in the fast data block. Digital input is handled by
sixteen 24 bit words in the CAMAC crate. Because of the mismatch
between the 24 bit CAMAC words and the 16 bit PDP-11 words and the
fact that digital inputs are not always exactly 16 bits long,
considerable shuffling around must be done by the CAMAC device

handler and the exact number of data points that can be handled by
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the available input cannot be given. Currently, the first eight

24 bit CAMAC words handle eight data points (magnet current, magnet
voltage, magnet power supply voltage, precision chamber static
pressure, and roll and frame for each of the two experiments) as
well as the data from the two TC systems and the subaddress read
back for the TC systems and the Scanivalve.

The rate of 16 reads an hour for the slow data block was chosen
to match the time required to read in all the TC's in each of the
two TC systems. The rate of 64 reads an hour for the fast data
block, could be doubled if there was a real need for data that often
and more disk storage was available to keep the data for a reasonable
amount of time. The present rate also allows time to read all 64 DVM
data points into the fast data block, if desired.

At the proper time to start a read in, the clock task sets the
appropriate event variable. As soon as the central processor is
available, the requested task starts the read in procedure. First,
two general purpese buffersiare reserved. One will be used to hold
the raw data for this read. The correct ID code and current date
and time are put into the first four words of this buffer. The read
in control list is read from the disk into the other buffer. The
four ID, date and time words contain the date and time when the read
in control list was last modified; the remaining 252 words control
what piece of data is read into the corresponding location in the
raw data buffer. These words contain the device number in the high
byte (high order eight bits) from Table IV, and the subaddress in
the low byte. The device driver indicated by the first of these
control words is now called with the subaddress and location for

the data as arguments. Also included as an argument is a busy
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flag; the device driver will return zero here, if it has accepted

the input request or, if the driver is busy, it will return the
address of an event variable that will be set nonzero when the driver
is free. Also included in the arguments, is the address of a counter
of the number of data points which have been requested but not yet
read in. The driver must increment this counter when:zit accepts a
request and decrement it when that data has been read in. When

this counter becomes zero, the driver sets an event variable to

show that no more data is outstanding; the address of this event
variable is also an argument.

The action of the drivers for the six devices listed in Table IV
is rather different. The drivers for the TC systems run as separate
tasks, because they actually read the requested TC every 0.5 seconds,
apply a test to see if the reading has settled and then wait, read
and test again if the reading is still changing. If a time limit
of 7.5 seconds elapses without convergence, or the meter overloads,
an error code is put in place of the data. The DVM driver sets
the requested address and then returns. After the 0.5 second for
settling has elapsed, the DVM sends an interrupt and the interrupt
service routine reads the data and sets the flag to show the DVM is
no longer busy. The scanivalve driver sets a counter for the 64
sibaddresses, orders the scanivalve to the 0 address (home position)
and returns. When address 0 is ready to read, the scanivalve sends
an interrupt and the interrupt service routine reads the data, applies
a calibration (for the pressure transducer in the scanivalve), and
stores the calibrated data in the next location in the raw data

buffer. If all 64 data points have not been read in, the scanivalve



V-5 TM687
2628.000

is stepped to the next subaddress and the next interrupt waited for;
if all data has been read, the flag is set to show that the scanivalve
is no longer busy. The fast A/D and CAMAC inputs require only a

few tens of microseconds to read a data point, so these two device
drivegs immédiately redd the data add hbhen eetunn.

The read in tasks contain five different scanners of the read in
control list. The general scanner reads in devices numbered five
and higher and turns on four special scanners, one for each of the
first four devices in Table IV. Each of these scanners looks
through the read in control list for the next entry requesting the
read in of its device(s). The scanner then requests the device
driver to read the desired data. If the request is accepted, the
scanner then continues scanning the control list; if the request
is refused (device busy), the scanner waits until the device driver
ig free and reissues the request. When each scanner finishes the
read in control list, it is marked done. When all scanners are
done and the outstanding data counter goes to zero, indicating that
all the requested raw data has been read in, the task goes on to the
next step. The special scanners are needed to allow the first four
devices, all of which are DVM based and hence, rather slow, to be
reading data in parallel. This reduces the read in time to the
minimum possible, without putting any restrictions on the order of
the requests in the read in control list. If some problem with the
read in of a data point occurs or there was no réquest to read any
data in (zero device number in the read in control list), the
appropriate error code is put in place of the data.

The next step, once all the data has been read in, is to convert

the raw data to data in the appropriate physical units. First a
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flag is set to show that the data in the permanent 256 word memory

block is changing. Next the first of four constants blocks is read
from the disk into the second general buffer reserved by the task.

The constants blocks contain four entries for each of the 252 data

points. The first entry is a control word, which is followed by

three calibration constants; b, s, and a:

s—16+a

(physical data) = (raw data)*b*2 1)

Since both data and constants are stored as single precision PDP-11
integers (15 bits plus one sign bit), the s acts as a sort of poor
man's floating point to increase the accuracy of the calibration in
equation 1. Bit 0 of the control word, is set if this calibration
is to be applied. The remaining bits of the control word, if non-
zero, indicate a subroutine to call to do further operations on the
data. Currently, the only such subroutine is one which adjusts
the reading of control values (Scanivalve input) to be between
0 and 100% open. The calibrated data is then put into the permanently
assigned block in memory which contains the latest data points in
physical units. Once the first fourth (63) of the data points have
been processed, the second constants block is read into the general
buffer, used to process the next 63 data points in the block, and
so on. If the error code is encountered,in place of the data, that
error code is transferred to the final buffer without any modification.
If the result of equation 1 overflews, an error code indicating that
the data was too big is entered in the final buffer in place of the
data.

Next, any desired derived quantities, such as averages, differences,

etc. are calculated and put in the final buffer. Another possibility



Vv -7 TM687
2628.000

is to calculate the short term average of a key pulse parameter.
The sum of the data and the number of entries are stored in
memory after each pulse by a high priority task. Now the average
is ealculated, the input memory words cleared for the next interval,
and the average stored in the final buffer. The specifications
for this step are stored,in 6né er .more blotks.on the disk, and the
first such block is now read into the general buffer. Unlike
previous steps which operated on all data points with very similar
operations, here only specific data points are used in operations
that can be very different. The céntrol block has the usual first
four words, but the next work is a link (the block number) to the
next control block. The last (or only) control block will have 0
in this word. The operations to be performed are each specified
by a string of words in the control block; each string is terminated
by a zero. The first word in each string specifies the subroutine
number that the derived quantities processor will use. Next is a
word that specifies where the data is to be stored in the final
data buffer, followed by words specifying the input. These words
can be constants, specify data that has just been put into this
final buffer or the latest values of data in the other final data
buffer. This last possibility is one of the major reasons that the
latest values of the data for both the fast and slow data blocks
are kept permanently in memory. A second zero, after the one
terminating the string, ends action on the current control block.
If the link to the next block is nonzero, that block will be read
in and used; if it is zero, this step is complete.

Next, the flag is set to show that the data in the final buffer

is no longer changing, the two general buffers are released, and
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an event variable is set to signal the task which does further
analysis of the data that a new final data buffer is ready to
process. The final data is written on the disk in the area for
all data of this (fast or slow) type and, if the read request was
at an even % hour, the data is also written on the disk in the
area for quarter hour data of this type. Finally, if the magnetic
tape logging is active, the data is also written out as the next
record on the tape.

If a read in overrun occurs, i.e., the time to start the next
read comes up while the task is still in the raw data read in step,
the o0ld read in is terminated, the error code indicating overrun
is put in the unread data locations, the task waits several seconds
for any outstanding requests to the device drivers to be completed,
and the old data is processed by the remaining steps of the task.
The read in of the new data thken begins.

The read in tasks for both the slow and fast data blocks are
virtually identical, in fact, they both share some re-entrant code.
Of course, they use different control blocks from the disk and
read different sets of data as a result. Some care must be
exercised in setting up the read lists for these control blocks to
be sure that no device is requested to read more data points than
it can in the available lime.

The data processing task is now activated by the event variable
which was set by the read in task after all new data was in the
permanent memory buffer. This task completes the analysis of the
new data. First, it reserves two general buffers for its own use.
Its first job is to add the new data to some partial sums which are

stored in six blocks on the disk. These partial sums are used
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every two hours to calculate the mean and standard deviation of
each point for all the reads during this period. The partial
sums>require six words for each data point. The number of reads

so far in the two hour period is stored in the first word (single
precision), the sum of the data is stored in the next two words
(double precision), and the sum of each datum squared is stored in
the last three words (triple precision). The sums are updated by
reading the first of the six partial sum blocks into a general
buffer, adding the current data for the first 42 data points to

the 6x42 partial sum data words in the first block, and then writing
the new information back on the disk. This process is repeated for
the remaining five blocks.

The next step is to calculate the rate at which all the data
points are changing with time. These rates are always expressed in
units per hour and are calculated with respect to the data read
15 minutes and 60 minutes ago. First, the data from 15 (60) minutes
ago is read into one of the general buffers. The data and time
words of this old data bleck are then checked to be sure that the
block contains data read 15 (60) minutes ago, if it doesn't, a flag
is set to show that there is no data for these rates. This could
occur, for example, if the online program had jiist been started after
having not been run for a significant period of time. The value of
the current data minus the old data (times four if calculating a 15
minute rate) is then stored in place of the o0ld data. If either
the current or the old data is missing (i.e., an error code), the
error code for no data is stored instead. After these calculations
are complete, one of the general buffers will contain the rates

based on data read 15 minutes ago, and the other will contain the
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rates based on data read 60 minutes ago.

The program contains a special provision to automatically print
a list of the gold chromel TC values and rates on the memory scope
every time the slow data buffer is processed. This data has
become a virtual necessity for the bubble chamber operator to
correctly monitor and control the bubble chamber cooldown, particularly
in keeping the cooldown rates of the glass bubble chamber windows
within safe limits. Before the online computer system was available,
one operator was kept busy full-time watching no more than three or
four TC's, calculating the cooldown rates by hand, and controlling
the cooldown valves. A second operator was kept busy almost full-
time reading and recording all 60 TC's every half hour. With the
online computer system, the values and rates for all 60 TC's, as
well as averages of groups of TC's, are displayed 16 times an hour.
One operator, spending only part of his time, can easily control
the chamber cooldown and the danger of excessive cooldown rates on
the glass windows has been reduced considerably.

This list is printed out on the memory scope now by the data
processing task using the values stored in the permanent data block
in memory and the rates stored in the two general'buffers. The
print of this list everytime the slow data is read: can be turned
off when it is not needed.

The next step is to check all the new data and give a warning
message and (optiomally) an alarm, if it is outside limits which
have been set by the bubble chamber operator. These checks may be
on the current value, the 15 minute rates, or the 60 minute rates.

Four sets of limit checks for each of the 252 points in both the
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fast and slow data blocks are possible, but only a small subset of
these are expected to be active at any one time.

The control and limits used in these checks are stored in nine
blocks on the disk. Nine words are used for each data point. The
first of these is a control word which uses four bits for each of
the limit checks. Two of these bits indicate that the limit check
is turned off, or is to be made on the value, 15 minute rate, or
60 minute rate. The third bit, if set, will cause the alarm to
be sounded if the check is outside limits. The fourth bit, if set,
indicates that the operator has acknowledged the out of limit
condition for this check, and no further tests are made for it until
the Bif i§ resét. The remaining eight words are the low and high
limits for each of the four checks.

The limit checking can be turned off by a command from the key~-
board; however, if this is done, the alarm indication remains on
continuously to remind the operator that the limit checks are
disabled. If the limit checks are active, two more general buffers
are reserved. One is used to sequentially hold the nine disk
blocks containing the control and limit data. The data points are
checked sequentially, skipping any checks which are turned off,
acknowledged, or which refer to a value or rate containing an error
code. When‘a check shows data outside of limits, the alarm control
bit is tested and the alarm indication made if the bit is set. The
identification block for this data point is then read into the fourth
general buffer (unless it is already there because of a previous
limit check). The data point name, number, units, and format is
taken from this identification block for the message. The message

is always printed out on the decwriter for a permanent record and
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includes the value (or rate) which was out of limits, the limits,

S or F (for slow or fast data block), the data point number, limit
check number, date, and time, in addition to the above. If the
check caused an alarm, a * appears next to the value. If the CRT
screen is not being used for some other purpose, the message will
also appear there, except that a blinking value replaces the * if
an alarm resulted. After the message output is complete, the alarm
indication is removed. When all limit checks have been made, the
analysis of the new data is complete and the general buffers
reserved for this task are released. The task then goes to an orwait
until more work is required of it.

If the task receives a second request for action while it is
printing out limit check messages, it prints a message that it has
aborted the list of messages and then goes to the new request.

Aside from completing the analysis of new data in the fast
and slow data blocks, this task has the third job of calculating
the means and standard deviations for pulse, fast, and slow data
every two hours. This requires three general buffers, one for
holding a block of the partial sums of the data read in the last
two hours, and one each for the output means and standard deviations.

The equations used are:

o2 )‘A— 2)

Where the x; are the data points read, N is the number of reads,
x is the mean, and s is the standard deviation.

First, the means and standard deviations are calculated for
the pulse data read in during the last two hours. The partial sums

for this have been stored on the disk by a high priority task which
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is activated after each pulse has been read in. The sums are
stored separately for each of four pulse numbers (first pulse,
second pulse, etc. of a multipulse sequence). Since 125 points
are stored for each pulse, three disk blocks are needed for the
six partial sum words per data point. These are read sequentially
into the first general buffer and the resulting means and standard
deviations stored in the second general buffer. The number of
pulses for the A (hadron) and B (neutrino). experiments are stored
in place of the means for the last two data points. As a special
case for pulse number 0 (the first pulse), four scalars in the
CAMAC crate are read, reset, and stored in place of the means for
the previous four data points. These scalars are used to record
the number of accelerator clock pulses, the number of accelerator
pulses with beam in the Main Ring, and the number of pulses with
beam hitting the neutrino target during the last two hours. These
numbers have been used to study the wvarious efficiencies which
affect the picture taking rate at the bubble chamber.

When the output block has been filled, it is written on the
disk in area for means and standard deviations for the first
pulse. If the magnetic tape logging is active, the block is also
written as the next record on the tape. After each input partial
sum block has been used, the first general buffer is cleared and
the current date and time put into the second through fourth
words. This buffer is then written back on the disk to clear the
partial sums for the next two hour period. The whole process is
then repeated for the data from the second, third, and fourth
pulses.

Similar operations are done next for the fast and slow data.
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Six input partial sums blocks are used for each data type and the
means and standard deviations are stored in separate output blocks
and written into different areas on the disk. The means and
standard deviations are also logged as separate records on magnetic
tape. After completing operations on the slow data, the data
processing task releases th¢ _1ree general buffers and returns to
the orwait until more work is required of it.

The processing of each data point in the slow and fast data
blocks is controlled by a data status byte. These bytes are stored
in one block on the disk and read into a permanent bloeck in memory
at program start up time. The result of the values assigned to
this data status byte are shown in Table VI. The value of 0 is
usually used to turn off the read of a bad input, for example an
open TC. Three is the usual value for an input which is functioning
correctly. Other values can be useful when debugging and setting
up the control blocks on the disk.

The read in, analysis, and logging of data described in this
Section are all automatic and require no operatdr intervention.

The information needed by the program is stored in blocks on the
disk (see Table VII) which can be set up before a bubble chamber
run by one knowledgeable person. Permanent changes to these
blocks to, for example, read and process & new piece ef data er
change the calibration constants for an existing piece of data
can be made quickly while the online program is running without
interrupting the data processing. Since the information is on the
disk, such changes do not have to be made again when the program

is restarted. These 54 blocks stored on the disk represent about
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one half the 112 blocks of memory »n this computer, which is the
maximum amount for a PDP-11/20. Using disk storage in this way
enables the program to handle four times the data points in a much
more general way, as compared to the code described in the next

Section. Both sections of code require about the same amount of

memory.
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VI. READING AND PROCESSING OF PULSE DATA

This Section describes the handling of data which is acquired
and stored for each pulse of the bubble chamber. Unlike the slowly
varying data discussed in the last Section, chamber parameters
vary rapidly during the pulse and time is critical in correctly
reading them. Consequently, the coding which does this job, is
quite different in character than the rest of the online program.
Critical parts of the code have been written to be fast at the
expense of requiring somewhat more memory. Input and output
buffers are permanently assigned, instead of being available for
general use. The code is entered by an interrupt within a few
microseconds after the electrical signal which starts the bubble
chamber expansion system. Once entered, the interrupt code runs
on the highest priority and retains use of the central pfocessor
for the duration of the chamber pulse (about 350 ms). Because of
time requirements and the specialized and varied character of the
data read during the pulse, all operations have been written out
in code and no tables, etc. are read from the disk during the pulse.
The one block of constants used is read when the online program
is started and retained in memory at all times. The code contains
three blocks (3x256 words) of output buffers which can hold the
data from six pulses. The three blocks are organized with an
identifying word first, followed by a date word. Next, are two
time words, followed by 125 data words, and this is repeated for
the second pulse in the block. The writing of this pulse data from
the output buffers onto the disk and magnetic tape, the addition

of the pulse data to partial sums blocks (for calculation of the
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two hour means and sigmas for each pulse number), and the display
of the pulse data are done by high priority tasks after the pulse
is over and the interrupt code has released the central processor.
The interrupt code, with its buffers and the one constants block
currently require 3586 words of memory; the high priority tasks
specifically for handling the pulse data require another 900 words
pPlus one general buffer.

Figure 2 shows the various steps taken by the code after the
interrupt occurs on the expansion value open electrical signal.
Also shown are a typical pressure curve inside the chamber vs.
time and the times that beam enters the chamber and that the lights
are flashed. -Tmmediately after the interrupt occurs, eight channels
of analog information are latched in sample and hold amplifiers and a
direct memory access read of this data is started by the fact analog
to digital converter. Usually, six of these channels receive data
from dynamic pressure transducers at various locations inside the
bubble chamber, between the piston rings, and under the piston. The
remaining two channels measure the position of the chamber piston.
The latch of the analog data occurs in a few p seconds, the read
in of eight channels requires about 200 p seconds. Since the chamber
piston doesn't start to move until a few hundredths of a second
after the expansion valve open signal , these readings give chamber
pressure and piston position before the pulse starts, i.e. their
static wvalues.

Next, the time since the previous interrupt, is determined using
the computer's internal programmable clock, which runs at 10 KHz.

If this time is greater than a preset value in the constants block
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(two seconds) the pulse is assumed to be the first pulse of a
possible multipulse sequence, if the time is less, then the pulse

is a second, third . . . etc. pulse of the sequence. A pulse

number is now assigned for this pulse, § means the first (or only)
pulse in the multipulse sequence, 1 means the second pulse, 2 the
third, etc. Separate timing constants for five different pulse
numbers are stored in the constants block and the correct set is now
transferred to the active timing locations. These timing constants
determine the length of steps A, B, and D, the length of the early,
beam, and late gates, etc. Next, the roll and frame for both the

A (hadron) and B (neutrino) experiments are read as well as the
precision static pressure transducer and the magnet current. The
next pulse output buffer (% block long) is selected and marked to show
the three high priority tasks that it contains new data. The static
values of the eight A/D channels are converted to physical units
(i.e. PSIA or inches) and transferred to this output buffer. Also
transferred is the other data read in so far and the timing constants
described above.

The time remaining for step A, to the nearest 100 us, is now
calculated (see Figure 2) and the processor goes into a loop which
keeps checking the clock until the necessary time has gone by.

Every 500 us, the state of eight binary bits is checked and the

time of any changes is recorded. These eight bits monitor important
events during the bubble chamber pulse and are given in Table VIII.
The checking of these eight bits is done every 500 us in steps A,

B, and D; in step C it is done every 100 us to get more precise

values for beam and light flash times.
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Step B is started after the time for step A has elapsed. This
should be shortly before the chamber piston starts to move and the
chamber pressure starts to drop. The eight A/D channels are sampled
every 500 pys and then read using direct memory access by the fast
A/D converter, which takes about 200 ps. After sets of data have
been read into two separate eight word buffers, analysis of that
data begins while the next set of data is being read into a third
eight word buffer. This analysis is done during read in, both to
minimize processor time at the highest priority level, and to save
core by using the same three eight word buffers over and over again.
An important piece of information about the bubble chamber is how
much work is done by the expansion system on the chamber liquid
during the pulse. If too little work is done, tracks will not be
visible; if too much, track and parasitic bubbles will be too large
and the required additional cooling of the chamber ligquid will
result in increased schlieren effects (local distortion of tracks
and fiducials due to temperature gradients in the chamber liquid
near the cameras), and may even overload the hydrogen refrigerator.

The work done on the chamber liquid is:

W=IPdV

cycle
which can be approximated by (see Figure 3):

_ 1
W = 5 z (p

+ P.) (V.
i
cycle

i+ 1 i - vy 3)

+ 1 i

Data from the two previous reads is used to add one term to the sum
in equation 3, while the fast A/D is reading the current data into
the third buffer. Actually, there is enough processor time between

reads to calculate three different [PAV values, using three different
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pairs of transducers. In addition to these calculations, the data
from each transducer is checkéd to see if it is a new maximum or

a minimum for this pulse and, if so, the value and time are recorded.
The coding for these calculations, controlling the fast A/D, and
checking the eight bits for timing, has been carefully written to
be as fast as possible in order to finish in 5C. gs. If any time
remains at the end of the cycle, the processor loops on the clock
until time to start the next 500 ms cycle.

Step C is started 20 ms before the time that beam is expected to
be injected into the chamber. The data from the fast A/D is switched
to go into an array of 81 eight word buffers and the analysis
described for step B above is no longer done between the 500 ms
reads. This is done so that the processor can be used to check
the eight bits for timing every 100 ps and to read two scalars which
are intended to record hadron beam particles entering the chamber.
It has the additional feature that the most interesting part of the
eight channels of transducer data, i.e. at beam time *20 ms, is
available for possible further analysis after the pulse is over.

The time near to beam time is divided into early, beam, and late
gates. Under typical operating cenditions, the bubble chamber is
track sensitive to particles arriving from about 10 ms before beam
time, to within a millisecond of the time the lights are flashed.
Early tracks will have low bubble density and a large bubble size;
late tracks will have small bubble size. Out of time tracks are
hard to analyze, especially for cross section measurements. The
hard wired bubble chamber gating can be set to inhibit taking any
picture with early or late hadron beam particles; recording their

presence with the computer and taking the picture provides
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physicists with the option of excluding those pictures from parts
of their analysis at a later stage. The signal from a coincidence
of scintillation counters in the beam is fanned out and counted by
two 100 MHz scalars in the CAMAC crate. One of these is read and
cleared at the start of the early gate to record counts occurring
since the last chamber pulse while the chamber was not sensitive.
It is read and cleared at the start of the beam _ :e for early
counts, read without clearing in the center of the beam gate for
counts in the first half of the beam gate, read and cleared at
the end of the beam gate for the total number of counts in the
beam gate, and finally read and cleared at the end of the late gate
for late counts. The second scalar is used for more precise timing
information. It is cleared at the start of the early gate, then
read and cleared every 1 ms during the early gate. All the data
from the early gate is packed into one computer word with the
appropriate bit set if there were any counts during that time slot,
and the bit cleared if there were none. During the first half of
the beam gate, another computer word is used and the time slots
are reduced to 100 ﬁs. The last half of the beam gate uses
another word and 100 pys intervals and finally a fourth word and
1l ms interval i% used for the late gate. This process is duplicated
for a second coincidence in the other two channels of the quad 100
MHz scalar in the camac crate. The CAMAC input is done by direct
commands to the CAMAC interface, rather than using the BISON library
program KSOOllll, in order to save time.

Step D is started at beam time plus 20 ms. The read in and

analysis of data is done exactly as during step B, which is

described above. Step D should continue until the chamber piston has
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returned to its inatial poésttion.

Now that all the data about the pulse has been read in, Step E
is started. First, the A/D data stored in the 81 eight word buffers
during step C is analyzed in the same fashion as was done in real
time during steps B and D. Next, the scalar, timing,deV, and
extreme pressure and stroke values, together with the times these
extreme values occurred are converted to the proper form and stored
in the output buffer. This includes converting extreme pressure
and stroke values to physical units using calibration constants
stored in the constants block and converting the deV's to joules
using the calibration constants for the two transducers used for
the integration. Times are recorded in 100 us intervals after the
start expansion signal. If an event didn't occur, the data was
too big, etc.; the appropriate error code is put into the output
buffer in place of the data.

The actual time of the beam timing signal, as recorded from
one of the eight timing bits, is compared with the time expected
as defined by the constants for this pulse number stored in the
constants block. If necessary, a change is made to the constant
controlling the length of step A. Likewise, the difference
between the flash and beam times is compared and the length of the
late gate adjusted if required. Other timing changes are not
normally required, if necessary, they can be made manually in the
constants block, via commands entered on the CRT keyboard.

The time of the minimum value from one pressure transducer is
selected to define when the minimum pressure occurred. The time
intervals between beam and pressure minimum and between beam and

flash are then calculated and stored in the output buffer. One
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pressure transducer and one stroke transducer are selected and the
difference between the appropriate extreme value and the static
value used to calculate the pressure drop and stroke, which are
stored in the output buffer. The selection of transducers is
determined by entries in the constants block. The beam to pressure
minimum time, pressure drop, and stroke, as well as one of the
three deV values is sent to a numeric display in the rack above
the expansion system controls. The data is sent to the display
serially, using eight bits of a digital output module in the CAMAC
crate. The last three data are converted to analog voltages and
available for recording on a strip chart in the Control Room. The
pressure drop has turned out to be an accurate gauge of chamber
sensitivity and is used frequently by the operating crew to maintain
stable operating conditions during physics running and to quickly
reestablish proper operating conditions after periods of downtime.
In the latter case, 15 to 30 minutes of valuable beam time is saved
because a test strip is no longer required before starting physics
pictures.

Event variables are then set for three high priority tasks which
are responsible for further operations on the data in the pulse
output buffers. Finally, the CAMAC device handler is notified that
it has been interrupted and that it will have to repeat any routine
I/0 operation that it may have been handling. The interrupt
operation is then ended and the processor released to continue its
normal task processing under the BSX systems The three high priority
tasks are responsible for: 1) writing the pulse data on magnetic
tape; 2) writing it on disk, updating the partial sums (used to

calculate means and standard deviations for each pulse number every
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two hours) on the disk, and updating partial sums stored in memory
for a few key parameters (used to calculate means every few minutes);
3) updating a listing of pulse parameters on the memory scope (if
requested) and/or a page listing of a subset of up to 15 pulse
parameters on the CRT display (if requested). Since these high
priority tasks operate on the data in the six pulse output buffers,
they need not finish their work before the next pulse interrupt
occurs. Up to five pulses interrupts from one accelerator beam
spill are storéd in the pulse output buffers and the three tasks
will complete their work on them before the next accelerator beam
spill without losing any data.

A special effort has been made not to require any action by
the bubble chamber operators in order for the computer to correctly
read and store the data from the pulse. All the control information
needed by the program is stored in the constants block, the latest
version of which is read into memory from the disk automatically
when the online program is started up. This block is typically
set-up at the start of a run by one knowledgeable person and requires
a little modification during the run. The timing signals used
(start expansion and beam times) are the same ones that the operator
must set correctly for proper bubble chamber operation, whether or
not the computer is running. The operator has no additional timing
settings to make for proper computer operation. The data logging is
automatic and available for future display, subject of course to
the space limitations of the disk. Updating of the numeric display
in the expansion control rack is also automatic. The display of

more complete information is optionally available on demand.
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VII. DATA STORAGE

In addition to small amounts of data storage in memory, the online
program uses the disk to store large amounts of data which can be
recalled quickly and the magnetic tape to store data permanently
for later offline analysis. One large contiguous file (BCDATA) of
4096 (256 word} blocks on the disk is allocated for use by the
online program. As shown in Table IX, this file is organized
into sixteen 256 block groups. Fourteen of these groups are used
to store various types of data about the bubble chamber. Each
group is used as a circular buffer with the most recent data being
written over the oldest data of that typei One group 1is used to
store control tables, calibration constants, temporary results,
list specifications and other information needed by the online
program, see Table X. Storage has been allocated so that all of
the most recent data is available for a few hours, a less frequent
sampling of the data is retained for a couple of days, and data
means and standard deviations are available for three weeks. The
léth group of 256 blocks is available for Ffuture use. The remaining
704 blocks on the disk cartridge hold the DOS monitor, DOS system
programs PIP and VERIFY3, needed to transfer files between peripherals
and to verify the disk file structure, and the load modules for up
to three versions of the online program. Data is logged on the
magnetic tape just after it has been read in by the online program
in one long file. The online program automatically writes a
standard PDP-11 file label at the start of each new blank tape. The
file name incéludes a sequential serial number which is automatically
incremented for each new tape. The creation date is also included

in the file label. Next, the first 256 blocks (i.e. the first
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group) on the disk, which contain the control tables, etc. are
written on the new tape. This is done to provide a complete
description of the data on the tape for the (future) offline
analysis programs as well as to make a backup list of these
control blocks which can be used to restore the file on the disk
if necessary. If the program is restarted with a partially filled
magnetic tape, operator commands are available to properly
position the tape before data logging on it is resumed.

All blocks in the file on the disk and records on the magnetic
tape (except the file label record) contain 256 words and have the
same identifying information in the first four words. Word O
contains a four bit code in bits 15-12 indicating what type of
information is stored in the block, see Table XI. The 12 low
order bits contain the block number, relative to the start of
the 4096 block BCDATA file, on the disk where the information is
stored. This is included to further specify the contents of the
block and to make restoration of the disk file BCDATA from the
magnetic tape easier, should this feature be required in the
future. Word 1 contains the date and words 2 and 3 the time, in
PDP-11 formats, when the data was created or the control list last
modified. Usually, the remaining words contain the data or control
list, see Table XI for exceptions.

Data blocks in all the data groups in Table IX, except the last
ones for the values of pulse data, are stored within the group at
a position determined by the clock task (see section X) based on
the date and time that the read in of each data block began. 1If

the online program was not running for some period of time, no data
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will be read and no data will be stored in the relevant locations

in the various groups. These locations will still contain earlier
data. Before any data from these groups is used for a display, the
date and time words (words 1, 2, and 3 in the data block) are checked
to be sure that the data was indeed read in at the expected time.

If this check fails, the error code for no data is output instead

of the data, or if no data at all is available for a list, a no

data error message is output on the CRT screen.

The data storage for the values of pulse data (last entry in
Table IX) is sequentially with the pulses as they occur and not
time based. Therefore, no date~time checks, as described above,
are made before the data is displayed. A binary search of the 512
blocks is done during program start up to find the most recent
data, and storage of the next two pulses will be in the next block.
This means that the most recent 1024 pulses stored by the online
program are available for display, even if the program has just
been restarted. Blocks 3584 to 4095 are used as a circular buffer;
if the previous two pulses were stored in block 4095, the next two
pulses are stored in block 3584.

During the start up phase of the online program, standard DOS
program requests3 are used to find the disk address and length of
the BCDATA file. These are transmitted to the subroutine which
handles all disk input and output for the online program tasks.
When a task needs a disk I/0 operation, it calls this subroutine
specifying the relative block number in the BCDATA file, the start
address of the (256 word) block in memory to be used for the
transfer, and either read or write as arguments using the DOS

Fortran call convention3. The front end of this disk I/0O sub-
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routine is re-entrant and, if the subroutine is already busy for
another task, will cause the task issuing the new request to go
into a BSX wait until the subroutine is free. When the disk I/O
subroutine is free, BSX will give control of the CPU to the highest
priority task with a pending request. BSX can handle multiple I/O
requests to the same device directly, but this would require more
code (i.e. memory) in each task and would not honor the pending
requests in order of their task priority. The disk I/O subroutine
stores the relative disk block number in bits 11-0 of the first
word in the block (writes only), checks that the requested block
is within the BCDATA file and issues a fatal error message if it
is not, calculates the actual disk address, and uses the BSX QTRAN
directive6 to start the transfer. The requesting task then waits
until the transfer is complete (notification is via a BSX event
variable) and then control is returned. The disk I/O subroutine
requires 67 words of memory.

When magnetic tape logging is active, program requests to log
data are handled by a high priority task. This task is activated
either by a pulse interrupt handler, or by a subroutine similar
to the disk I/O subroutine described above. When activated, it
searches the pulse output buffer control words for pulse buffers
which have not been written on tape yet, writes those buffers on
tape, and then marks them empty (in so far as the tape writing
task is concerned). If a general request to write data on tape is
pending, it will be accomplished now by the tape task and the tape
output subroutine notified via an event variable. The tape writing
subroutine and that part of the tape task in the main program
require 233 words of memory.

Tape positioning and tape label writing, etc., requires 1101
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words in the first overlay. These functions are only needed occa-
sionally, so putting the code in an overlay results in a net saving
of memory. This code is rather longer than is absolutely necessary
to satisfy two desires. First was to make it possible to resume
data logging on a tape at the point where it was interrupted by
power failure, program bomb-out, tape unit cleaning operation, etc.,
so that each tape would be full, instead of having a larger number
of partially filled tapes. Fewer tapes means less cost, less
volume required to store them, and less time and operator effort
required to change tapes. The second desire was to make the tape
handling commands as simple as possible while still providing
sequential, DOS tape labels and reducing the risk of data loss
through operator error.

When the online program is started up, or when the operator
enters a command to start logging data on the magnetic tape (after
this feature has been inactive), the mag tape status register2 is
tested and error messages written on the CRT terminal if the tape
unit is not ready or there is no write ring in the tape. Once
any such problems are resolved, the register is tested to see if
the tape is at the load point or not. If the tape is at the load
point (beginning), the tape unit is ordered to skip forward one
record. If the tape is blank (new), this would normally result in
a runaway tape unit, which would skip forward through the entire
tape (about 10 minutes). To prevent this, the magnetic tape byte
record counter is tested every 1.0 second and if it has not changed,
a power clear command is issued to stop the tape. After one second,
a fake "operation complete" interrupt is sent to the driver routine

to reset it and the tape is rewound. Since the tape has been
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verified to be a new blank tape, a file label record is written
on it containing the current date and a sequential tape number.
This sequence number was stored in the general constants block
which was read in from disk block O earlier in the program start-
up phase. The number in the constants block is now incremented
and the updated constants block written back on the disk to be
ready for the next new tape. Next, a general buffer is reserved
and the first block in the BCDATA file is read from the disk into
the buffer and then written out on the tape. This procedure
continues until the first 256 blocks on the disk have been written
on the tape, then the general buffer is released. Data logging
on the new tape now begins automatically.

If the original skip operation ended normally, the tape is
rewound to the load point and the first record read and summarized
by a message on the CRT screen. In the usual case that the record
is a DOS file label, the CRT message includes the file name and
creation date. The operator then has three options. If he changes
the tapes;. the program notes the not ready condition of the tape
unit and automatically starts over again.with the procedure given
in the previous paragraph. If he gives the command to overwrite
the tape label and data, the program treats the tape as if it were
originally blank and proceeds as outlined above. If he wishes to
move the tape to the end of the recorded data, he uses the commands
given bélow.

If the tape was not at the load point when the online program
was started-up or tape logging requested, the tape is backspaced
one record using direct commands to the hardware registers. This

special backspace is used to avoid fatal errors from the DOS driver
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if the tape was positioned in the middle of the record. If the
backspace reaches the beginning of the tape marker, the program
then treats the tape as if it was originally at the beginning.
Otherwise, the record is read from the tape and a summary message
written on the CRT screen. In the usual case that it was a data
record written by the online program, the message includes the
ID, date, and time information from the first four words of the
record, see Table XIT.

Once the summary message of the record has been written on the
CRT screen, the operator has several commands available to position
the tape and indicate where logging of data is to resume. The
tape unit can be moved forward or backward a specified number of
records. On forward moves, the program makes the checks outlined
above for blank tape and stops on blank tape, on end of file (EOF)
mark, at the end of tape or when the specified record count is
satisfied. After either move command, the previous record on the
tape is read, summarized on the CRT screen, and the tape positioned
just after that record. When the operator has moved the tape to
the desired position, another command starts the logging of data
on the magnetic tape. Unless canceled by the operator, the first
256 blocks from the disk are written on the tape before data logging
is resumed.

The default option for the skip forward command is for a very
large number of records (more than the tape holds), so this one
command alone is sufficient in most cases to position the tape at
the end of the data previously written on it. If data was being
logged over old data on a tape and no EOF mark was put on the tape at

the end of the new data, the operator must find this point by using
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the tape positioning commands and studying the information in the
summary messages.

Once tape logging has begun, it normally continues until the
end of the tape marker is reached. The program then backspaces the
tape, writes three EOF marks, rewinds the tape, and writes a
message on the CRT scre requesting a new tape. When the new tape
is loaded, the program will automatically start the procedure
described in this Section. Commands are also available to manually
start the end of tape procedure (to permit tape unit cleaning),

specify no tape logging (if the tape unit ié down or for program

debugging), or té restore the disk control tables from the tape.
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VIII. DATA DISPLAY

Most data displayed by the bubble chamber online program is
optional and requested by operator command. Since the code to
make these displays is only needed when these requests are made,
most of it is overlayed, in fact it makes up the bulk of the three
overlay segments. The addition of more optional displays and special
optional analysis of data would be relatively easy, because addi-
tional overlay segments can be added with little or no increase in
memory requirements. Although the most recent data is kept in
memory, most of the data available for displays is stored on the
disk (917,504 words). Rates are not stored on the disk, but are
calculated each time they are needed for a display.

Much of the data display requires the output of alphanumeric
characters on one of the four line output devices: the line printer,
memory scope, CRT terminal screen, and Decwriter. This data is

10 which I have modified

formatted using the Bison routine FMTPUT
to insert a decimal point in the data if desired and print out an
error code, see Table XII, if the data value is in the range

100000, to 1000078 instead of the actual value. By specifying the

8
previously unused code 5 in bits 7-5 of the format input to FMTPUT,
a signed decimal integer conversion with these features is done.
The number n bits 14-13 of the format specifies the number of
digits to the right of the decimal point. The resulting displays
show the data with decimal points in the usual, gquickly understood
format, while still storing the data as single precision integers,
which is virtually required by the size and hardware of the PDP-11.

The modified FMTPUT requires 471 words of memory. All requests by

tasks to output a line of data are handled through a line output
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control subroutine for several reasons. The subroutine reserves
the line output device for that task for a preset time interval
and puts tasks requesting the same device in the BSX wait state
until the time interval is over. This prevents mixed lines of
output for two different lists on one page, and also leaves
pages of output on the memory scope for at least a minimum time
so they can be examined. The subroutine inserts form feeds and
title, date and time information if requested. Finally, since
FMTPUT is not re-entrant, the subroutine will allow only one task
at a time to use it. The subroutine uses the BSX QTRAN directive6
to output the line after it has been formatted. The line output
control subroutine requires 679 words of memory, which include
line output buffers for the four devices.

One principal means of displaying data is by a list of many
different data points, all read in at (approximately) the same
time. These lists can be output either on the memory scope for
temporary use, or on the line printer for a permanent copy. The
list can include rate information, based on the difference between
data read some interval (15, 60, or 120 minutes) earlier and the
values at the selected time, and expressed in units per hour. These
lists are displayed on a relatively simple command typed on the
control CRT terminal keybroad by the operator. The command consists
of one or two letters specifying output on the memory scope or
line printer, a list number, a letter specifying the type of data
desired (C = latest read, A, Q, or M; see Table IX), and the
desired time expressed in days ago, hour of day, and minute of hour.
In the case of a request for pulse data, type A, the number of

pulses ago is specified instead of the time.
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The command is converted by the Bison program CICONV9, the

first overlay read into memory, and the command decoded and stored
by code in the overlay.

An event variable is set for the low priority lists task and
the command task returns to wait for another command. The list
routines occupy 591 words in the main segment and 1137 words in
the first overlay. The bulk of the part in the main segment finds
and reads the requested data blocks from the disk and calculates
the ratesi It was put in the main segment because it is also
used by the few variable summary code in overlay 2. The list number
in the command specifies the disk location of the first list
specifications block. A general buffer is reserved and the first
list specifications block is read into it. The last eight words
of this block contain data block codes which specify the data
blocks needed for the list. These can be slow, fast, or pulse
data, any specific block in the BCDATA file, or the data in the
edit buffers (see Section IX). 1In the first case values, standard
deviations, or (15, 60, or 120 minute) rates are also specified in
the data block code word. The required additional number of
general buffers is now reserved and the desired data is read into
the general buffers. For requests for bubble chamber data, the
data type, date, and time specified in the list command as well as
the data block code word are needed to specify what data is needed.
The date and time of these data blocks are checked and if they do
not match the expected values, flags are set to output no data
error codes in place of the data. Any desired rates are now
calculated.

The code words starting in word 5 of the list specifications
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block are now scanned, the lines of the list constructed, and the
list output line by line. Before the first line is written, the
line output control subroutine is requested to send a form feed
and title containing the current date and time to the device (which
was selected in the operator command). The strings of list
specification code words consist of a control word first followed
by the required number of words specifying data location or
alphanumeric characters to be output as titles. The control word
is very similar to the format word needed by FMTPUT10 to format
the desired data, but some bit combinations which are unused by FMTPUT
are used by the list routine to order special operations. The
number and use of the words following the control word are
determined by the repetition count and format code fields of the
contreol word, which are the same as the FMTPUT format word definitions.
Data location words specify one of the eight possible data blocks
(defined by words 248-255 of the first list specifications block)
to use and the offset of the desired data within that block. A
zero control word ends the line on the list, and a second zero
control word indicates the end of the list specification block.
If word 4 of the specification block is zero, the list is complete;
if the word is nonzero, that block is read in and used for continued
list specifications. 1If the list was on the line printer, a two
second timer is started and if no further lists to the line printer
are begun in that time, the list task is re-entered and it spaces
the paper forward 25 lines to move the printed text out of the toner
tray.

As pointed out in Section IV, the main motivation for using

this method to display lists was to put the list specifications on
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the disk, thus relieving most of the memory requirements for this
job. Presently, there are 15 lists using 28 disk blocks for their
specifications, but this can easily be increased without

requiring any more memory. Another benefit is that new lists can
be added and old lists modified while the online program is running,
see Section IX. The data from the online program is so useful in
operating the bubble chamber that the operators dislike any
interruption, even for program improvements, so this feature is of
real importance.

Once the desired list at the selected time has been printed,
the operator can use the advance command to print out the same list
using data from the next (or previous) read interval. Optional
arguments of the command allow skipping read intervals and specifying
how many times the command is to be automatically repeated.

Figures 4 and 5 show examples of bubble chamber data output
with this list program. Figures 6, 7, and 8, also made with this
program, show the data that is currently read into the slow, fast,
and pulse data blocks. For the first two, the online program uses
the same two or three letter plus number code to name indidators
that are in general use at the 15' bubble chamber.

The 15 lists currently implemented include seven which output
data about the bubble chamber and its support systems and eight to
give information about the set-up of the online program. Of the
latter, three are used to give the read lists (Figures 6-8), four
give a list of the limit checks which are presently active or
acknowledged, and one gives a dump of the edit buffer.

A special optional provision is made to output the list of gold

chromel thermocouples on the memory scope each time the slow data
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read in is completed (16 times per hour). This is used primarily
during cooldown when this information is vital for the operator to
correctly control the cooling rate of the glass bubble chamber
windows. A similar provision is available to automatically list
data taken every chamber pulse on the memory scope, but this is
less useful. When the chamber is being double pulsed, there is
insufficient time to print out all the data on the memory scope.

From the data taken every pulse, the operator can select up
to 17 data points to be output as a page (similar to pages in the
beam line MAC system) on the CRT screen. Fourteen pages are
possible, and this page display is activated by a one letter
command followed by a page number. This command calls the first
overlay into memory which then reserves a general buffer and reads
the block of page definitions. The data point numbers (word offsets
in the pulse data 1/2 blocks) for the requested page are taken
from the definition block and saved in memory locations within the
main segment. The pulse ID blocks are then read sequentially into
the general buffer and the output format (which contains the decimal
point location, i.e., the scale factor) for the desired data points
is also saved in the main segment. The 14 character title for the
data point is taken from the ID block and written on the proper
line on the CRT screen. Since this title is then stored in the
CRT terminal memory, there is no need to save it in the computer
memory. When all the ID blocks have been processed, the general
buffer is released, a flag set to show that the page display is
active, and the overlay is released.

After every pulse of the bubble chamber, the pulse data display

task is activated and will update the CRT page display. Using the
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data point numbers and formats saved when the page was requested,
this task deletes the seven characters on each line just after the
title and then writes the desired data at the end of the line.
After five chambergpulses, each line contains the title of the data
point displayed on that line and the five most recent values of
the data point, earliest one on the left and latest one on the
right. This gives the operator information on the pulse to pulse
variation of the data and the CRT display is fast enough to output
even multipulse data between accelerator cycles. As a special
option, the hadron beam hits/misses vs. time can be displayed on
the 18th line of the page; time increases from left to right and
X's appear in time slots with at least one hit, see Section VI.
The line after the normal data point displays is deleted before
the line is written, so that several of these timing lines can be
displayed with the one from the latest pulse at the bottom.

Figure 9 is an example of this display, using simulated data when
the bubble chamber was not running.

As described in Section VI, four key chamber expansion parameters
(stroke, fPV, pressure drop, and beam to pressure minimum time) are
sent to a 16 digit display in the rack abowve the expansion system
controls every pulse. The first three of these parameters are
converted to analog voltages and are available for recording on
strip charts.

In addition to the lists, which display a large number of data
points at one time, it is possible to display a summary of a few
variables (up to 7) at many successive times. Frequently, knowledge
of the time variation of a few variables is important in understanding

some aspect of the bubble chamber operation. To obtain such a
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summary the operator enters a command just like the list command
described above with a special list number. The command is decoded
by the same code in overlay 1 as was used for a list command. The
tiem specified is that for the end of the summary and the default
time is now. Since this would be the usual request, no time need
be entered in most cases.

After the command is decoded, overlay 2 is called and the code
there reads in a block of information from the disk which contains
the list of variables which were used for the last summary. The
seven o0ld variable definitions are output one at a time on the CRT
screen as a command to define a variable for the summary list with
arguments specifying the old definition (see Figure 10). This
allows the operator to change the definition, but if no change is
needed, he need only press the return key. Specifying the variable
completely requires one letter to indicate the slow, fast or pulse
data blocks, the data point number (see Figures 6, 7 and 8) and a
three character code for value, standard deviation, or (15, 60 or
120 minute) rates. Once the variables are specified, a line is
written on the screen with the number of entries and the interval
in minutes used before. Changes to these parameters can be made
before the return key is pressed. If the interval is specified as
0 minutes, the program will compute the minimum interval for which
data is stored, using the first ﬁariable definition and the data
type specified in the list command. Next, an event variable is set
for the lists task and the command task returns to waiting for the
next command.

The remaining code is also in overlay 2 and runs on the lowest

priority lists task in order not to interfere with the data read in
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and logging functions of the online program. Abstracting the data
from the disk blocks may take up to one minute if the maximum
number of 256 entries is requested and data is needed from blocks

in several different groups on the disk. First, the specified
variable list is scanned and the required set of code words,
identical to those stored in the last eight words of the list
specification block, needed to obtain the complete list of variables
is constructed. The output format and the information for a 20
character title for each variable is read from the various ID
blocks on the disk and stored in the same block as the variable
definitions. Using the input arguments, the date and time for the
start of the list and the interval between desired data is calculated.
The subroutine in the main segment is then called to read the nec-
essary data and calculate any required rates. This subroutine is
the same one used for the list display and is described earlier in
this Section. Since the subroutine may require up to three general
buffers for each of the slow, fast, and pulse data types (if all
were in the requested variable list), sequential calls are made

for each data type and the desired data is abstracted after each
call. This abstracted data as well as the date and time words from
the block containing the first requested variable are stored in a
~general buffer. If the block of data containing the first variable
was never read, zeros are stored in place of the date and time words
to show that no data is available. This procedure is repeated for
subsequent times as specified in the operator commands. When the
general buffer is filled, it is written on the disk in the area for

this type of data (blocks 131-142). The block of constants, which
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now contains the variable definitions, titles, and formats for the
new data, is also written back on the disk.

Finally, the data for the summary is read back sequentially
into a general buffer and the list output on the requested device.
This step is skipped if the no list option was selected in the
original command. 1In any case, the data summary on the disk has
been updated and is now available for the graphical displays
described below. 1244 words in the second overlay are required to
make this few variable summary. Figure 11 is an example of such
a summary. The actual commands used to make it are shown in
Figure 10.

Once the few variable summary list has been made, the data on
the disk is available for plotting. Plots on the memory scope are
made using the Bison subroutine PLOTAlz. The operator enters a
simple one letter command, followed by a one letter option and the
variable number (s) which are defined when the few variable summary
list was made. If the option or variables are not specified, the
previous definition is used. Options are for one large line graph
of a variable vs. time, with or without symbols plotted on the
points and with optional error bars taken from a second variable.
The latter option only makes sense, of course, if the plotted
variable is a mean and the error bars are taken from the corresponding
standard deviation. Also, four small line graphs of different
variables can be put on the memory scope at the same time, either
with or without symbols plotted on the points. A scatter plot of
one variable vs. another can also be made. In this case, the

coordinate pairs come from data read in at (essentially) the same

time. Titles and tic values are also put on the graph. The hard-
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ware and subroutine HCOPY4 supplied by the computing department can
be used to copy the graph from the memory scope onto the line
printer, but resolution suffers somewhat in this this transfer.
Figures 12-15 were made by the online program using this feature.
The code to plot the graphs on the memory scope and make the hard
copy is all in the second overlay and requires the remaining 2481
words in that overlay.

When the operator enters the command to plot on the memory
scope, the second overlay is read into memory and the block
containing variable definitions, the previous graph option and
variables, etc., is then read from the disk into memory. The
graph options and variables are updated from the command, if
necessary, and the required three or four general buffers reserved.
The data blocks written on the disk when the few variable summary
was made are then read sequentially into one of these buffers and the
required data for the graph is put into the remaining buffers in
the proper format for PLOTA. One buffer contains the X coordinate,
another the Y coordinate, and the third (if required) contains the
corresponding error. The memory scope is then reserved, erased,
and the X axis title written on the scope using the line output
control subroutine described earlier in this Section. The remain-
ing arguments are then set up, and PLOTA called to output the line
~graph, Y axis title, tic marks and labels. If symbols are requested,
the arguments are:modified and PLOTA called again to put them on.
If the option for four small graphs was selected, the above steps
have output only the first of these. The read of the few variable
summary disk blocks and general buffer fill is repeated for the

second graph, arguments modified and PLOTA called again (twice for
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symbols on the points) to plot the second graph. This is repeated
for the third and fourth graphs. Finally, the data block with

the updated graph option and variable numbers is written back on
the disk and the germeral buffers released.

On a command to make a hard copy, overlay 2 is read into memory
and an event variable for the list task is set. The lists task
then calls HCOPY to copy the memory scope onto the line printer.
Since HCOPY was written with wait loops rather than interrupts to
signal the end of each I/O operation, it is necessary that it runs
on the lowest priority list task to permit the read in and data
logging functions of the online program to continue without delay.
It takes about 20 seconds to make a hard copy.

It is also possible to make graphs of one variable vs. time
directly on the line printer using the Bison program PLOTks. The
resolution of such graphs is considerably better than those made
with the hard copy feature. The online program handles such
requests in a way very similar to that used to make graphs on the
memory scope, with the following exceptions. The code is in overlay
3 and the entire overlay is needed to make the line printer graphs.
The option to make four small graphs is not available or necessary;
the operation can enter four commands if he requires a permanent
record of four graphs. PLOTB was not written to make scatter plots,
so this option is not available. This job is switched to the lowest
priority task after the command has been decoded. This is necessary
because the plotter driver or hardware supplied by the computing
department does not currently work on PDP-11/20's, so I have written
simple instructions, similar to those used in HCOPY, to transfer

the data to the line plotter registers directly. The wait loops
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tie up the task for the 20 seconds or more it takes to output the
graph. Since the other tasks all have higher priority, this
doesn't delay the read in and logging features of the online
program. Another problem with PLOTB is that it requires a full
character line for each X axis value, so a graph of all the data
available (256 time values) requires five pages. Figures 16 and
17 were made directly on the line printer by PLOTB and contain
the Same data as Figures 12 and 13. Note that the actual
commands needed to make Figures 11, 12, 14, and 16 are shown in

Figure 10.
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IX. DISK BLOCK EDITING

Since the bubble chamber online program makes extensive use of
control tables, constants tables, and list.specification blocks on
the disk, some feature is necessary to enter and modify the infor-
mation in these blocks. This could be theoretically done with a
separate program, but there is a distinct advantage in being able
to do disk block editing with the online program. The BSX task
structure permits the disk block editing to be done by the online
program with no interference to the read in and data logging
functions of the program. A separate program would mean that
these functions would not be done while the editing program was being
run to edit disk blocks. The data from the online program is so
useful in operating the bubble chamber that any interruption, even
for program improvements, should be avoided if possible, so being
able to edit control tables and list specification blocks online is
of real value. More important still is that changing limit check
‘values, which means editing blocks on the disk, is frequently done
by the operators and, therefore, should be as simple and quick as
possible. A separate program would take longer and require more
commands to be entered, compared to the present online editing.

All the code for the editing is in the first overlay, requiring
1573 words. For direct editing, the programmer first enters a
command to assign one or two general buffers for editing. Two
buffers are used as separate input and output buffers. In the editing
process, selected data is taken from the input buffer, displayed on
the CRT screen where it can be modified if desired, and then written
into the output buffer. For most editing operations, only one buffer

is needed and this is used as both the input and output buffer.
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These buffers must remain assigned for editing until all operations
are completed, but the editing programs need not remain in memory
during this period. Thus, a graph or a few variable summary (which
requires other overlays) could be made without spoiling the editing
process. Any editing command will recall the first overlay to get
the code required to complete the requested action. The secondary
editing commands, described later in this Section, do use the same
code as the primary editing command, so that their use would
destroy any other editing job in progress. Ahother command exi

to assign any location in memory as the edit buffer. This is

used as an aid in debugging the program online. Since the editing
code was put in the first overlay to save memory, only code in the
main and first overlay segments may be examined and changed with
the editing commands. When the programmer finishes his editing
operations, another command will release the general buffers
assigned above.

Commands, specifying any relative block number in the BCDATA
file on the disk as an argument, will read or write the selected
block of data into either buffer. Before a write is done, the
current date and time are entered in words 1-3 of the block to
show when it was last modified. If tape logging is active, the
block is also written as the next record on the tape. This is
intended to be used by the (future) offline analysis programs for
an up-to-date list of the data being logged in each block on the
tape.

Another set of commands is available to take data from the
input buffer, display it on the CRT screen in the specified

format where it can be changed by the line edit features of the
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modified KBIOHT sub-program (see Section X), and write the modified
data into the output buffer. In the case of octal or decimal
format, five words at a time are displaved on the screen. The
word offset of the first piece of data appears before the data.
The line is actually a command (written by the computer to itself)
to change the data in the output buffer, starting at the word
offset given in the first argument, to the values given in the
last five arguments. When the return key is pressed, the Bison
routine CICONV9 will be called to convert the command, so the full
power of CICONV is available to specify the format of the arguments.
Since the word offset where the changes are to be entered appears
as an argument, it can be changed before the return key is pressed.
This provides the means to easily shift data avound in the buffer.
The original command allows the programmer to enter the word
offsets of the first and last words he wishes to change. If these
specify more than five words, sequential lines of five words at a
time will appear on the CRT screen until the requested last word
has appeared. For long (<45) strings of ASCII (alphanumeric)
characters, conversion is unnecessary and CICONV does not accept
such strings, so the program uses these directly without calling
CICONV. The command for an edit of ASCII characters must specify
the word offset of the first character, the number of characters
and optionally the number of times to repeat the command and the
number of words to skip after the end of the previous string before
starting the next one. Another command can be used to change one
byte of data in the edit buffer.

One of the lists available (Section VIII) will dump the contents

of the output buffer, in both octal and ASCII, on either the memory
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scope or the line printer. The editing commands described above
are very general and powerful, but require detailéd knowledge of
the program and disk block organization to use correctly. Therefore,
a set of secondary edit commands have been written for general
operator use to do a restricted set of editing tasks on the disk
blocks. These commands call the primary edit commands, described
above, when necessary. The arguments are easy to specify and require
no detailed knowledge of the program or disk block organization.
Currently, there are five secondary edit commands. Four of
these are used to modify the control and constants tables on the
dikk for one data:point in either the slow or the fast data block.
To specify which data point, the first two arguments after the command
are. one letter to specify slow or fast data block and the data point
number, see Figures 6 and 7. The command to adjust the calibration
constants used in equation 1 for that data point requires either two
or four additional numbers as arguments. The first of each pair of
numbers is the correct output for a given signal and the second is
the current output for that signal. If only one pair of numbers is
specified, only the zero (a in equation 1) will be adjusted, if
both pairs of numbers are given, both zero and gain (a, b, and s in
equation 1) will be modified. The other three secondary editing
commands concerning a data point reguire no additional arguments.
Instead, they will output on the CRT screen current values from the
control or constants tables on the disk, accept changes to that
information, and make those changes on the disk when the return key
is pressed. One command changes the data status byte, see Table VI
and Section V; the second modifies the four limit checks for the

specified data point, and the third changes the read in control list
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word, format, name, number, units, and calibration constants for
the data point. This third command is not intended for general
operator use, but has been included to save the programmer's time
and reduce the possibility of an error when the disk tables are
modified to cause the online pProgram to read in a new piecé of
data from an existing device. The fifth secondary editing command
will change the variables displayed on the specified page for the
CRT screen page display of data from the bubble chamber pulse. The
page number to be changed is specified as the argument after the
command. The data point numbers in the pulse buffer (see Figure 8)
being currently displayed are written on the CRT screen, changes
accepted, and the updated page definition block written back on
the disk.

All these secondary edit commands first call the code used by
the primary edit command to reserve one general buffer. The arguments
are used to determine which disk block is needed first and this
block is read into the reserved buffer. The desired words, in the
proper format, are written on the CRT screen for possible changes.
After any changes are made and the return key pressed, the new
information is put in place of the old in the edit buffer. In the
case of the calibration command, this step is unnecessary; the
arguments of the command are used to calculate the new constants
which are written over the old ones in the edit buffer. If reguired,
more lines are output to the CRT screen, etc., until all the
necessary changes have been made in the edit buffer. The updated
block, with the current date and time in words 1-3, is then written
back on the disk using the same code as the primary edit command.

In the case of the command to set up the read in of a new piece of
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data, three disk blocks must be modified, so the required steps
are repeated until all blocks have been processed. Finally, the
edit buffer is released, the first overlay is released, and the

command task returns to waiting for the next command.
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X. PROGRAM DETAILS

A. Program Start Up

Several jobs need to be done when the online program is started
up, and the code required to do them is not needed at any other
time. Such code has all been put in one area in memory and this
area is used as a general buffer after the start up phase is
complete. The start up phase also uses some code in overlay 1,
so this overlay is called into memory at the start of the phase.
Next, the interrupt vectors are set for the pulse, scanivalve, and
DVM interrupts. The CAMAC crate controller is initialized according
to the procedure suggested in reference 1l1. The DOS .INIT, .LOOK,
and .RLSE programmed requests3 are used to find the disk address
and length of the long data file, BCDATA, used by the online
program. This information is stored in the disk I/O subroutine and
used there before each disk data transfer to insure that the
request is within BCDATA. Illegal requests result in a fatal error
message, so that the online program cannot destroy other files on
the online data disk cartridge or even on some other cartridge
left in the disk drive by mistake. The .LOOK request requires an
additional 512 words of monitor buffers which are released as soon
as the request is over. Since most general buffers have not been
assigned yet, these 512 words of memory will also be available for
use as general buffers.

The console switches are checked and, unless a special code has
been set in the seitches, the memory used by ODT will be used for
general buffers. Two general buffers have already been assigned by
one of the program source files. The space between the start of

BXSCAN (or ODT if it is required) and the top of the monitor buffers
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is now assigned as general buffers, the starting address of each
256 word buffer is stored in the buffer control subroutine, the
flags for those buffers are cleared to show that they are
available, and the count of available buffers is increased by the
number of buffers assigned. Fourteen general buffers are assigned
here, or less if the available free space in memory will no¥ allow
that many. After buffer assignment, the DOS and BSX tables are
modified to hold the new program low address and stack address. A
message is then written on both the CRT screen and the Decwriter
giving the current date and time, total number of general buffers,
and the location and length of the BCDATA file on the disk.

Next, the latest general constants block (mostly used for the
pulse interrupt handler, Section VI) is read from block ¢ of
BCDATA and the latest status byte block (for slow and fast data,
Section V) is read from block 10. The 32 character title from the
general constants block and the date and time it was last modified
is written on the CRT screen. The subaddress to be displayed on
the DVM and both thermocouple systems, when they are not reading
data are also stored in the general constants block. Event
variables are now set which cause the respective drivers to output
these subaddresses. Finally, a binary search of the 512 block group
on the disk holding data from the last 1024 chamber pulses is done
to find the most recent block written there. The data buffer
containing the next two pulses will be stored in the next block in
the group on the disk and the display routines will use this most
recent block number when displays of all pulse data are requested.
This insures that the last 1024 pulses are always available for

display, even immediately after program start up. Finally, now
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that the general constants block has been read in, the mag tape
logging task is requested.

Once the above jobs have been completed, the memory area
containing the code, formats, etc., used in the start up phase is
released for use as a general buffer. Each task contains some
initialization code, which is usually just to put the task in the
wait state on the proper event variables. See reference 6 concerning
the tasks for the standard I/0 devices and below for the clock task
which is more involved.

B. Clock task

On program start up, the clock task calls a subroutine which
sets up several peripheral devices for the online program. The

8 is called to change the mode for the program-

Bison program CKINIT
mable clock, direct the clock interrupts to the Bison interrupt
handler, and cause these interrupts to occur every % second. I
have modified CKINIT so that the clock runs at 10 KHz (instead of
100 KHz) to simplify the coding in the pulse interrupt handler,

see Section VI. The Decwriter keyboard, which is not used by the
online program, is disabled and the CRT terminal keyboard interrupt
is enabled. The fast A/D converter is initialized, the scanivalve
interrupt enabled to the Bison interrupt and gate unit, and, if
pulse data has been started, any pending pulse interrupt is cleared
and then the pulse interrupt is enabled. All these changes must

be undone before returning to normal DOS operation and another
subroutine has been written to do this. Whenever control is to be
shifted to DOS, either by typing control C on the CRT terminal

keyboard or because of an error condition that must be reported, this

subroutine is first called to switch the peripherals to their DOS
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mode. When continue is typed on the Decwriter keyboard, the first
subroutine is called to switch the peripherals back to the online
program mode.

The clock task then uses the current date and time words (see
Table XI for the format) to calculate the (double precision) number
of 1/64 hour intervals since the start of the base yvear, which is
specified in the clock task. The number of days in the base year is
also specified, so that this calculation is done correctly for two
consecutive years. This permits the number of 1/64 hour intervals
to be continuous over New Year (when the bubble chamber always seems
to be scheduled to run), but the programmer should change the base
year sometime during the second year while the chamber is not running.
If the current 1/64 hour number is different than the previous one,
a new 1/64 hour interval has begun and an event variable is set to
read in the fast data block. The low order eight bits of the number
are stored; these are the offset, relative to the start of the
group for all fast data, where this new data is to be stored on the
disk. Both the current and previous 1/64 hour numbers are shifted
right and this process repeated for the 1/16 hour (slow data), %
hour (quarter hour data), and two hour (mean and standard deviations)
intervals. This procedure results in the data reads beginning at
even intervals based on the time of day and data storage on the
disk occurring with each group being used as a circular time based
buffer with the periods shown in Table IX. The first time through
this code, after program start up, no event variables are set, so
that all reads start at the beginning of the next preset time interval.

The two hour event variable is set on program start up and the data
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processing task (Section V) will examine the first partial sum block
on the disk. If the date and time recorded there is within the
current two hour period no action is taken, but if it is not, the
means and standard deviations for the old two hour period are
calculated, stored in the proper disk location, and the partial

sum blocks cleared for the current two hour period.

Next, the clock task processes the timers. These are set up by
any task needing an event variable set after an interval of time. The
task calls a subroutine specifying the event variable address and the
number of % second intervals to wait before setting that event variable
nonzero. The subroutine first checks the event variable address against
those already stored in the currently active timers. If a match is
found, the specified interval is used to reset that timer. If no
match is found, the first inactive timer is set to the specified
interval and the event variable address stored. When the clock task
is executed (every % second), the timer intervals are checked and
counted down by one if nonzero (i.e., active). If this countdown
results in the interval becoming zero, the corresponding event variable
is set nonzero. If a task were waiting on this event variable, that
task would then be activated by the BSX supervisor when it became
the highest priority task needing service. Currently, 15 timers are
available, but this could easily be increased if necessary. The
timers require 106 words of memory for the code and storage; addi-
tional timers would redquire two more words each.

The state of six bits on the Bison interrupt and gate unit input
register are then checked. These indicate the open/closed state of
six bubble chamber control valves; five are valves which maintain

level in cooling loop heat exchangers and the sixth is the valve
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shown in Figure 1 to let liquid helium into the magnet. The number
of reads and the number of times each valve was found open are
recorded in memory. One of the derived quantities subroutines for
the slow data block (Section V) will compute the percent of time
open for each valve, store the result in the slow data block, and
zero the memory locations for the next interval. Some difficulties
(probably a program problem) have been experienced in always receiving
the interrupts for the scanivalve and the DVM, so a timer is set
after each operation that should result in such an interrupt. 1If

a real interrupt has not been received in this time, the clock task
will issue a fake one.

Finally, the clock task sends a pulse, via one bit of the Bison
interrupt and gate control output register, to reset an external
timing circuit. If this circuit is not reset for five seconds, it
will cause a bubble chamber alarm indicating that the online program
has bombed out. To encourage operators to get the mag tape logging
started properly, this pulse will not be sent out until this has
been done, so the bubble chamber alarm cannot be reset until the
mag tape logging commands have been entered. The clock task then
waits on the event variable which is set every % second by the clock
interrupt handler. If then repeats the procedure which starts in
the second paragraph of this subsection.

C. Command Task

A Qtran request6 is issued to input a line from the CRT terminal
keyboard and the command task waits until the line is entered and
the return key pressed. The Bison terminal driver7 (KBIOHT) has
been written to accept output lines (to the CRT screen), even with

this input request pending, until the first character of the command
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is entered. Once the return key is pressed, the command is converted
by the Bison routine CICONV9. The @ symbol required by CICONV is
entered in the buffer by the command task and echoed on the CRT
screen by KBIOHT when the first character of the command is typed,
but does not have to be typed by the operator. This was done to

cut down the number of characters that the bubble chamber operator
must type for a command.

If CICONV detects an error in the command, an error message is
written on the CRT screen to show what was wrong and the task waits
for the next command. If the command is legal, CICONV calls the
proper subroutine to carry out the desired action. Such subroutines
generally make additdonal checks on the arguments; if some problem is
found, they change one number in their argument list and the command
task code will then write the proper error message on the CRT screen.
Because so many of these subroutines are in the first overlay, CICONV
has been slightly modified to call the first overlay into memory
and reserve it before such subroutines are called and to release it
after they return. Most of these subroutines require a very short
time to complete the requested action. If a more lengthy job is
requested, an event variable is set for the lists task and the
command task returns to wait for another command (see Section VIII).
Currently, 48 commands are defined, but only about 17 of them are
used by the bubble chamber operators.

D. Overlay Control

Before entering code in one of the overlays, the task must put
the desired overlay number into RO and call the overlay control
subroutine. The front end of this subroutine is re-entrant and, if

the overlay area is busy with another task, will put the task making
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the new request in the wait state until the overlay area is free.
When the overlay is available, the subroutine checks the overlay
segment currently in memory and reads in the requested segment
unless it is already there. A flag is set to show that the over-
lay is busy and the subroutine returns control to the address on
the top of the stack. This address was set by the task making
the request and can be a location in the overlay. If the overlay
control subroutine was called with the usual JSR instruction,
control returns to the next instruction in the task, which may now
call subroutines in the overlay segment. When the task has been
finished with the overlay code, it calls a subroutine which sets
the proper event variable showing that the overlay is free and
returns. These overlay control subroutines require 52 words of
Memory.
E. General Buffer Control

Tasks requiring general buffers must first call the buffer
control subroutine, specifying the number of buffers needed and
address of a table for the buffer address as arguments. The front
end of the buffer control subroutine is re-entrant and, if the sub-
routine is busy with another request or there are not enough free
buffers, it will put the requesting task into the BSX wait state
on the appropriate event variable. If enough buffers are currently
free, the subroutine searches the buffer flags, assigning the free
buffers to the requesting task by making their flags busy and
transferring their start addresses to the table specified in the
subroutine call, until the request is satisfied. The count of

currently free buffers is then reduced by the number reserved for

for the requesting task and event variables set if >1, 22 ..., 25
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buffers are still free. Control is then returned to the issuing
task, which then has exélusive use of the reserved buffers until they
are released.

When the task has finished using the buffers, it must call the
buffer control subroutine again to release the buffers, specifying
the same arguments as before, except with minus the number of buffers
to be released. The subroutine searches its table of buffer addresses
until it matches the first entry in the address table specified in
the call, marks that buffer flag free and repeats until the specified
number of buffers have been marked free. The count of free buffers
is increased by the number of buffers released and the event
variables described above are reset. Control is then returned to
the task issuing the request. The buffer control subroutine requires
120 words of memory, which includes the buffer flags and start

address for 17 general buffers.

F. CRT Terminal Driver

The Bison routine KBIOHT? has been modified to drive the TEC 430
CRT terminal used for the online program. The CRT terminal was
acquired because it is much more convenient for editing lines of
information as discussed in Section IX and makes the page display
described in Section VIII possible. The Decwriter was then available
to make a permanent log of limit checks out of range, Section V. The
improved line editing features are also available for the commands
entered by the bubble chamber operators who are already familiar with
an identical terminal in the bubble chamber control room, used to
broadcast bubble chamber status information on the neutrino lab TV
system. Finally, the CRT terminal does not generate piles of paper
containing commands which are usually of little.long term interest.

Aside from changing the address of the hardware registers from
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those for the Decwriter to those for the CRT terminal, it was also
necessary to make changes to the driver to allow the improved line
editing features. An end of the line buffer pointer and a counter
of the total characters on the line were added. To output a line
of text for editing, the line is formatted as usual with FurpuT O
but then the line feed character is removed and the count of
characters put into the total character counter. The line is then
written on the CRT screen in the usual manner. An input request is
given to the CRT keyboard using the same buffer as was used for the
output. KBIOHT was modified so that this buffer would not be
cleared by the input request if the total character counter was non
zero. KBILOFTFT then adds the total character counter to the initial
buffer pointer for the end of buffer pointer. The character count
and buffer pointer originally in KBTIOHT are used to indicate the
present position of the cursor on the CRT screen. A test was added
to the keyboard interrupt handler in KBIOHT to first check the
input character and branch to a special code if it was a line
editing character.

The character to move the cursor forward or backward one space

will now increment or decrement the character count and buffer

pointer, be echoed on the CRT screen to move the cursor, but willunot

be stored in the buffer. Attempts to move the cursor to before the
first character or after the last one are ignored. Normal
characters typed with the cursor in the middle of the line change
that character in the buffer, echo the character to make the change
on the CRT screen to the position over the cursor, increment the
buffer pointer and byte count, and advance the cursor one space.

Characters added to the end of the line do the above as well as
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increasing the total character counter and end of line pointer. Delete

or insert character codes result in an echo of that code to make the

change on the CRT screen, the movement backward or forward of the

characters in the buffer between the buffer pointer and the end of

the line pointer with the corresponding adjustment to the total

character count and end of the line pointer, and insertion of a

blank or removal of a character at the buffer pointer position. The

erase to end of line key is also enabled; this is done by echoing the

control character to make the change on the CRT screen, setting the

total character count equal to the character count, and setting the

end of buffer pointer equal to the buffer pointer. Rubout results

in the backspace and then delete character operations described

above. Other editing characters (used for page editing) are ignored.
When the return key is pressed, the space forward operations

are repeated until the cursor is positioned just after the last

character. The usual KBIQHT carriage return procedures are carried

out to insert a carriage return and line feed in the buffer and

notify the requesting program that the line input operation is

complete. Note that this results in the entire line being transmitted,

no matter where the cursor is positioned when the return key is pressed.

If the line feed key is pressed, the erase to end of line operations

are done first and then the control character is treated as if it

were a carriage return. Control U results in moving the cursor to

the start of the line, erasing the line on the CRT screen, clearing

the input buffer, clearing both character counters, and setting both

buffer pointers to the start of the input buffer. This follows the

usual DOS convention.

If KBIOHT is entered with the total character count equal to
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zero, the input buffer is cleared and both the buffer pointer and
end of kbuffer pointers set to the start of the buffer. When the first
character is entered from the keyboard, the CRT screen from the
cursor position to the end of the page is erased to clear out any
characters that may be displayed there (which would tend to confuse
the operator). Once characters have been entered on the keyboard,
the line editing features described above are available if needed.
G. Changes Needed to BSX

BSX will return control to the DOS monitor if one of a number
of error conditions are found or a control C is typed on the keyboard.
It is important that DOS will be able to run correctly in this case,
either so that the online program can be continued after certain
error conditions (i.e. a device not ready) are corrected, or so the
online program can be restarted easily. Some features of DOS are
useful in examining the state of the online program after certain
errors, which is frequently of use in debugging new versions of the
program. DOS will not run correctly unless the cloek is returned
to its DOS mode of operation and the decwriter keyboard enabled.
(BSX already resets the interrupt vectors it modified when online
program execution began). BXCODE was modified to call the subroutine
to return peripherals to their DOS mode of operation before control
is returned to DOS, and to call the subroutine to set the peripherals
up for the online program again if the operator commands DOS to
continue the online program. These two subroutines are described in
Section XB, cloek task.

The DOS driver for the memory scope, in DOS version 9, issues
a "VT not ready" message whenever the form feed character is sent

to the scope to start a new page. This is done to permit the
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operator to read the previous page and then type continue when he
wants the new page. This online program saves pages on the memory
scope for 10 seconds by other means (see Section VIII) and the
above procedure, which halts online program execution and switches
to DOS, is not acceptable for an online program. BXCODE was
modified to check error messages before switching to DOS and if the
message was "VT not ready" the error is ignored. A second such
error with % second is allowed to go through, because it would
indicate a real problem with the memory scope.

H. Memery Use

Table XIII gives a list of the bubble chamber online program
source files, including their functions and memory requirements.
Programs written specifically for the bubble chamber, Bison programs
written by the computing group at Fermilab, and DEC supplied programs
are listed separately. The total memory requirement is larger than
the memory on the computer; this is possible because the three
overlay segments share the same area in memory.

Table XIV shows the breakdown of memory use for different jobs
when the online program is running without ODT. Four general
buffers are not absolutely required, so 1583 words are available
for program expansion. Of these, I have reserved 128 words for
additional monitor buffers;‘perhaps this number could be reduced if
required. Of course, additional overlay segments can be added

which require little or no additional memory.
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XI. UNUSUAL PROBLEMS

A. Software

In 1974, when the first version of the online program was
written, minor changes had to be made to many of the BSX source
files because a newer versién of the MACRO3 program was used in
the DOS system for the bubble chamber computer. The Problem was
that the new MACRO program did not consider .CSECT names as .GLOBL
definitions and I believe this error has been corrected in the
current Bison library tapes.

An amusing error was discovered in the Bison CKINTR® routine
which caused the online program to bombout at midnight on the
computer's clock. The bubble chamber computer was nicknamed
Cinderella14 because of this error. It occurred because CKINTR
did not actually change the date word until about seven minutes
after midnight and a fortran call for the current data and time
during this period would cause the program to bombout. Another
problem was that CKINTR lost 22/60 of a second every 9.11 minutes,
so the computer clock appeared to lose about one minute per day.
Both of these errors were corrected and a copy of the corrected
CKINTR given to the Computing Department.

The Bison subroutine ISQRT13

» which calculates square roots

of integer double precision numbers was found to go into a loop

if given a number greater than or equal to 268,435,456 (i.e. 228),
This was solved by testing the number before calling ISQRT and if

it was greater than or equal to the above value, putting the error
code for data too big in the answer and not calling ISQRT. Since

the online program only uses ISQRT to calculate standard deviations,

numbers this large are of little interest.



XI - 2 TM687
2628.000

When overlays were first attempted, the DOS monitor would bomb-
out when trying to load the online program load module. After
almost a week's worth of effort, it was discovered that DEC had
published a patch t6 DOS version 9 (then in use at the bubble
chamber computer) to correct this problem, which only occurred
when trying to load programs longer than 16K from contiguous
files (which are necessary for overlayed programs). After the
patch was made, DOS version 9 worked properly and the bubble
chamber computer has since been shifted to version 10 which does
not have this problem.

As discussed in Section VIII, the Bison PLOTB5 program to make
~graphs on the line printer did not work correctly. The problem
was found to be either in the Computing Department plotter driver
or the plotter direct memory transfer interface on PDP-11/20
computers. I solved the problem by using direct commands to the
hardware registers to output the plot data. I believe that the
Computing Department is working on a longer term solution to this
problem.

B. Hardware

Most hardware problems on the bubble chamber computer have
been rather obvious and, after the problem is reported, the DEC
repairmen can find the trouble and fix it quickly with little or no
input from the programmer. However, about once a year, a pProblem
develops which requires perhaps a week of effort by the programmer
to prove that it is caused by hardware and then another week or
two of the programmer's effort working with the DEC repairman to
get the problem localized and repaired. I would expect that any

small computer will require two or three weeks per year of effort
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by an experienced programmer to diagnose and localize such
problems. The €omputing Department personnel can frequently
offer valuable advice, but they seem to have little time
available to work on such problems. Most of the time must come
from the programmer assigned to the machine.

The first problem occurred shortly after the computer was
installed. The computer would randomly bombout, even when running
DOS systems programs, which should be well debugged. Intermittent
problems are very hard to locate, and the DEC repairmen tended to
blame noise on the AC power line. This cause was eliminated by
borrowing several AC power filters and using them in the computer's
power line. When the bombouts continued, even with the computer
on filtered power, the repairman seriously went to work and
finally fixed the problem. I must confess that I don't remember
which component was a fault, but after the repairs were made,
the filters were removed and the problem did not return.

The next problem occurred almost a year later. When a block
of data was written from memory to the disk, somethmes a few words
in the block in memory were zeroed. When the usual DEC diagnostic
programs failed to detect the problem, I wrote a short test program
specifically to test for this error. After this, the DEC repairman
found an obscure DEC diagnostic which would also detect the error.
The cause remained difficult to locate; at one point the error
would not occur if the expansion box was pulled out, but failures
occurred when the expansion was returned to its normal position.
Some unibus cables were replaced and better insulation put
between the wire wrap pins and the expansion box top cover and the

problem went away. We are not sure what the actual cause of the
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problem was.

The latest problem occurred last spring with the magnetic
tape unit. Fatal error messages and program bombouts would
occur when the tape was commanded to backspace. Occasionally,
it would backspace to the beginning. Two hardware problems were
finally found. A faulty capstan motor was not always running
at constant speed and the tape unit electronics did not have up-
to-date field changes. This latter problem was found by swapping
electronics with another mag tape unit. Considerable programmer
effort was required to test various combinations and fixes, since
the normal DEC diagnostics would not detect the problem. After
the motor was replaced and the electronics fixed, the errors no

longer occurred.
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XIT. FUTURE POSSIBILITIES

Although the bubble chamber online cémputer system is now
essentially complete and has become more and more valuable for
bubble chamber operations during the last two years, one can
always think of new features that could be added and would
further improve bubble chamber operations. The addition of new
lists, the read in of new data points, and the calculation of
new averages, etc., can be done without changing the program
at all, but by modifying the control blocks on the disk, as
described in previous sections. As can be seen from figures
6 and 7, there is room for 95 more pieces of data in the slow
data block and 143 more in the fast data block. There are
many extensions possible to the few variable summary feature
described in Section VIII and some of these are outlined below.
Using the computer for control functions and several other
possible new features are also discussed. Which of these are
actually done depends on the needs of the bubble chamber
operating crew and the support given to this project by the
Laboratory.

The few variable summary (Figure 11), which gives the
values of a few variables at a large number of successive times
could be expanded to give maximum and minimum values, totals,
and means and standard deviations of each variable during the
time period covered by the summary. Much of the code regquired
for this already exists in the program. A straight line least
squares fit fbr each variable would give its average rate of
change during the time period of the summary. A straight line

fit of one variable vs. another would save much of the programmer's
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time when, for example, calibrating the dynamic chamber pressure
transducers against the precision static pressure transducer.
Histograms of the data in the summary and the selection of which
data is used for a display, depending on the value of another
variable, would give, for example, separate histograms of the
number of hadron beam tracks for the different pulse numbers
when multipulsing. Such information would permit rapid feedback
to the beam line and the accelerator and improve picture taking
efficiency. It might be useful to calculate a new variable from
two or more of the variables in the summary and be able to make
displays of this new wvariable. The ability to delete unwanted
entries from the summary before the displays or calculations are
made would be of use. A more difficult project would be to set
up a special, more frequent read in of a few variables and list
or display them using the existing features for the few variable
summary data. This might be useful, for example, to study the
pressures in various vessels and the control valve positions with
good time resolution during bubble chamber pressure test. It
would be convenient to make it possible to automatically update
any specific graph every time new data was read in. Since most
of the code for these projects could be in any overlay segment,
there is no basic difficulty in doing them, if enough programming
effort is allocated to the project.

Some additional programming effort on the graph displays
might be worthwhile. The Bison plotting routines could be modified
to use the format for the tic mark labels (PLOTAlZ) or the Y
coordinate values (PLOTBS) which inserts the decimal point in the

proper place (see Section VIII). Both routines already use
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FMTEUTLO to format these numbers, but some study of these rather
long programs would be necessary before this could be done
properly. More such effort could result in date/time labels on
the time axis of these graphs instead of the "intervals ago"
labeling done presently (see Figures 12, 13, 14, 16 and 17). An
effort is in progress to select intelligently rounded intervals
for the graphs instead of simply using the maximum and minimum
data values as is done presently. Both PLOTA and PLOTB are
advertised to have this feature as an option, but neither one
does it well enough to use.

Page displays on the CRT screen for slow and fast data,
similar to the existing feature for pulse data, could be added
without too much programming effort. Because of the slower read
in raté for these data, the initial request for such a page
should read from the disk and display the last five readings for
the selected data. Otherwise the operator would have to wait
too long to get useful rate information.

At present, the operator must specify a particular piece of
data by its data block and data point number, see Sections VIII
and IX. Usually he must look this up in the read lists, Figures
6 and 7. A dictionary look up routine could be written which
would accept the two or three letter plus number bubble chamber
naming convention, search the slow and fast data ID blocks on the
disk, and find the required block and data point number. Such a
routine would require a few weeks of programming effort, but
would save some operator time.

The present time of the pressure minimum inside the bubble
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chamber is currently just the time of the minimum pressure reading
from the selected transducer. Since this minimum is rather broad
and there is some noise on the signal, even after a filtering
circuit, a better estimate of the time of pressure minimum could
be obtained from a curve fit to pressure readings taken near
beam time. These réadings are stored in the pulse input buffers,
see Section VI, but several weeks of effort would be needed to
write and debug the fit subroutine using multiple precision integer
arithmetic. If this is done, it would be almost necessary to be
able to display the pressure data points and the fitted curve on
the memory scope to check that the fit was being done correctly.
Some bubble chamber data varies rather rapidly and sampling
it about once a minute for the fast data block does not really
give a good idea of its short term behavior. Such data could be
read every % second by the clock task, just as the position of
the cooling loop valves'is already done, see Section XB, and the
short term average stored in either the slow or the fast data
block in the same way. Digital input or the fast A/D converter
are the only devices on the system fast enough to input such
data. The gauge which measures the return flow from the bubble
chamber cooling loops is the most obvious example of an indicator
which should receive such treatment. Few memory locations and
only a small programming effort would be required to do this job.
The intensity of the proton beam on the target for Neutrino
experiments vs. the event rate in bubble chamber test strips has
been frequently very important in monitoring the performance of
the Neutrino beam line. The EMI computer records this intensity,

together with the bubble chamber picture roll-frame number, but
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presently is not able to give an online listing of these data.

In practice, the experimenters record the intensity by hand from
the MAC beam line computer display. If this intensity were
recorded by the bubble chamber computer in the pulse data blocks,
the few variable summary feature of the online program could
provide such a listing and save the experimenter their hand
recording job. Transmitting the beam on target intensity signal
from the MAC system could require another CAMAC crate and modules
which are rather expensive and new procedures to be learned by

the bubble chamber operators to set up the MAC system data transfer
correctly. Also, the signal arrives rather late after the pulse
and handling the data correctly would require considerable re—
programming for the bubble chamber online program. The transmission
of the signal on a TV sound channells, already developed for other
used at the bubble chamber, would be a cheaper and easier method

to get this signal into the bubble chamber control roon, where

the computer could read it in with the fast A/D converter. The
hadron beam counts into the chamber for each pulse are already

read into the computer, so such lists could currently be made

for hadron experiments.

As discussed in Sections V and X, the current date and time
are used to label all data read into the computer. The slow and
fast data blocks as well as all the means and standard deviation
blocks are stored on the disk in locations depending on the value
of this date and time. Therefore, it is wvital that the correct
date and time be entered into the computer each time that it rebooted.
Errors in the past have caused complications and the loss of some

data on the disk. Efforts are currently underway to read the control
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room digital clock during the online program start up phase, and
to reset the computer date-time words from this clock. In addition
to reducing the possibility of incorrect dates or times, this will
also speed up the process of restarting the computer.

It is expected that additional subroutines will be written
to calculate new derived quantities for the slow and fast data
blocks (Section V). Since data locations and constanfs are
stored in the contred block{s) on the disk, very little memory
space is required for such subroutines. One such subroutine
could convert the level of a cryogenic liquid in a storage dewar,
usually read as inches of water, into volume. Another could
calculate compression ratios for each stage of the compressors
in the bubble chamber support systems. When all the necessary data
has been interfaced into the computer, these compression ratios
would give an early indication of ring or valve problems in the
compressor. Another such subroutine could be used to convert the
nonlinear readings from vacuum gauges into linear pressures. A
subroutine to calculate the volume of gas, in a tank, under
standard conditions, from the temperature and pressure would be
very useful. When the required data has been interfaced, an
accurate inventory of helium in the system could be kept by the
computer. This would give an early indication of losses and could
result in reduced helium purchases. I expect that other such
applications will be found for the online computer.

Currently, when the magnetic tape unit is cleaned or a tape
fills up and must be rewound and changed, about ten minutes of
data is not recorded for long term storage. However, this data

is stored in various locations on the disk. With some programming
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effort, the computer could keep track of which disk blocks have
not been recorded on tape. When tape logging was resumed, these
blocks could be read (one at a time) from the disk into the
general buffer and then written on the tape. Once this feature
becomes operational, further programming effort could give the
bubble chamber operator online access to all the data stored on the
magnetic tapes. With the chamber pulsing twice per accelerator
cycle, almost 1% hours worth of pulse data is stored on the disk.
During this time, the tape could be changed, if necessary, and
repositioned to the start of the interesting data. The operator
would then specify the type of data desired, and the computer
would read the tape, select the specified data, and write it in
the currently unused 256 block group on the disk. The tape would
then be repositioned and data logging resumed, with the unlogged
blocks from the disk going on the tape first. With some
modification, the present display routines would then be used

to study this special data. Up to a few months of programming
effort would be required to do all this, and some careful
consideration of actual experience with the online program should
be made before deciddng whether or not to go ahead with this
feature.

It would require far less programming effort and less operator
time to add a second RKO5 disk drive to the system and use it to
store additional bubble chamber data, particularly the all fast
and all pulse data types. Another possible hardware addition
would be a second multiplexed digital volt meter. The DVM is
more accurate than the fast A/D and because of its several ranges,

no amplifier is required for each signal. Because of the rather
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slow settling time of a DVM, it would be better to add a second
system, rather than just increasing the number of multiplexed
inputs on the present system. The second DVM could probably
eliminate the lower ranges of the present DVM {see Table V),

and be made somewhat faster. In the longer range future, it may
be necessary to add additional digital input; it should match
the 16 bit PDP-11 words to reduce program complexity (memory
required) and not be CAMAC, since those modules are rather
expensive.

No offline analysis program for the bubble chamber data tapes
has been written yet. This should not be too big a job, because
it can be done in Fortran on one of the large Fermilab computers.
The Computing Department already has subroutines to read tapes
from PDP-11 computers. There are also extensive display programs,
such as SUMX or KIOWA; in use on these computers. Putting these
elements together should not require more than several weeks of
programming effort.

For the reasons given in Section IV, the computer system does
not have any control functions as yet. During bubble chamber
runs, when the control room is always manned, some control
functions may be an aid to operator. Between bubble chamber
runs, only a two man crew is present at the chamber and it would
be of real value to reduce the time they must spend in the control
room; thus freeing them for maintenance and development jobs.
During these between run periods, large quantities of expensive
neon-hydrogen or deuterium liquids are stored in dewars. Liguid
hydrogen is transferred to condensers in these dewars and allowed

to boil off to compensate for the heat leaks into the dewars.
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Currently, the hydrogen comes from a storage dewar, and the air
controllers that operate the transfer valves sometimes do the job
rather inefficiently, resulting in a greater use of liquid hydrogen
than is absolutely necessary. Using the online computer to control
these transfers could potentially save liquid hydrogen and hence
money.

The large hydrogen refrigerator, used when the bubble chamber
is running, is much too big to operate for only the small amount
of liquid hydrogen needed to keep the storage dewars cold. The
laboratory may acquire a much smaller refrigerator for this job.
If this is done, it should be as automatic as possible, and using
the online computer system as a part of the control system for it
should be considered, starting with the earliest planning stages.

During running conditions, one worthwhile control function
for the computer would be to regulate the chamber temperature.

The heat load on the chamber, which must be removed by the cooling
loops, consists of a constant load and the heat caused by pulsing
the chamber. Because of the large mass of liquid in the chamber,
changes in temperature caused by changes in the pulse rate or
depth do not show up on the vapor pressure thermometers until
several tens of minutes after the change occurs. In the past,
better chamber temperature stability has been achieved by the
operator manually changing the cooling loop control set points on
the air controllers when the pulse heat load is varied. Better
temperature control results in better physics pictures, because
bubble size and density are more uniform and because schlieren
effects are minimized if there are no periods of excessive chamber

cooling. The computer already measures the pulse heat load, so it
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would be reasonably easy for it to use this information from the
previous measurement intervals plus the difference between the
current average chamber temperature and the desired temperature
to automatically enter new set points into the air controllers
for the next time interval. The time interval for the slow data
reads (1/16 hour) would be just about right for this operation.
The only new hardware required would be electrical to pneumatic
converters for the set points and the programming changes would
not be large, although some experimenting would be required to
~get the proper control equations.

Another application of computer control would be to adjust
the expansion system drive gas pressure to get the desired
pressure drop during the pulse. Unlike the above case, the
chamber pressure drop appears to remain constant if the expansion
system control pressures remain constant. Therefore, I believe
that what is really needed here are betker pressnre regulators on
the expansion system, rather than computer control. The
efficiency of the hydrogen refrigerator is improved slightly if
the split of the warm compressor discharge gas to two heat
exchangers is adjusted so that the low pressure hydrogen return
and nitrogen vent gas temperatures are equal. The computer reads
in both temperaturés with the copper constantan thermocouple
system, and could use this information to control the valve which
splits the flow. However, experience shows that, once this valve
is set properly, it need not be adjusted unless drastic changes
are made in the refrigerator operating conditions. The option of
calculating the temperature difference between the two thermo-

couples, setting up a limit check and alarm on this difference,
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and letting the operator adjust the valve himself would be nearly
as effective and would require no program changes at all.

This section on future possibilities is certainly not a
complete list of all that could be done with the computer system
and is only intended to be a rough guide for the immediate future.
I am sure that continued experience with the computer under
actual running conditions will add new items to this list and
that practical considerations will imean that some of the items

will never be done.
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XIII. CONCLUSION

The online computer system described in this note has successfully
met the need at the 15' bubble chamber for accurate data logging
and display of this information. Knowledge of the time rate of
change of various parameters is vital at a bubble chamber, and
the system has been designed to provide this knowledge. When the
computer system has been particularly successful in meeting some
bubble chamber need, a short description appears at the appropriate
position in the tegt, and these have been flagged for general
interest. Since bubble chamber operators are, in general,
unfamiliar with computers, a special effort has been made to
minimize and simplify the actions required by the operator for
proper computer operation. A major problem with any small computer
is to fit everything required into the restricted amount of
memory available. This has been solved by making extensive use
of the disk and by coding the entire program in assembly language.
Much of the time invested in the program was needed to accomplish
this, and a large part of this note has been used to describe
these efforts in detail.

The computer system periodically reads in data about the
bubble chamber, converts this data to physical units, and calculates
additional data which depends on one or more of these data points.
The present program will handle 512 such pieces of information.
During every chamber pulse, data is read and bProcessed by the
computer. This results in an additional 125 pieces of information.
All this data is saved on the disk for varieus lengths of time and
written on magnetic tape for long term storage and offline analysis.

Almost one million words of information on the disk are available
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to the bubble chamber operator for displays on command. These
displays may be lists or graphs; all of which are set up to include
the time rate of change of the selected parameters.
I believe that some of the techniques, and perhaps even the
actual code, developed for the bubble chamber online program,
would be of use in other small computer projects at the Laboratory.
A list of the most likely candidates follows, with the section
reference in parenthesis.
1. CRT terminal driver (X F)
2. Timers (X B)
3. General buffers (X E)
4. Control and constants tables on the disk (V)
5. Editing of blocks on the disk (IX)
6. List specifications on the disk (VIII)
7. Start up code in an area which is then used as a general
buffer (X A)

8. Magnetic tape positioning and labeling (VII)

9. Insertion of decimal points into integer numbers for
output (VIII)

10. Error codes stored in place of data (VIII and Table XII)

11. Handling data as systémm&ically as possible (V)

Much of the bubble chamber online program is, in fact, a general
data logging and display program. With rather minor modifications
it could be used for similar applications at the experiment areas
for beam line data, at the new helium liquifier plant, or perhaps
at the accelerator. Tables I and III list what hardware would be
required, but data input devices would be rather different for most

of these possible applications. In fact, most of these would
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probably use a data transfer from an existing computer system
(i.e., the beam line MAC systems).

Some information about my programming experience with this
system may be of interest to anyone planning a small computer
project. Because of the memory limitations discussed in Section
IV, the final version of the program is written entirely in
assembly language. A novice assembly language programmer, even
one with considerable Fortran experience, will require three to
six months of full time practice to become reasonably proficient
(i.e. greater than 50% of his potential rate) in writing and
debugging such code. If he spends less than half time on this,
the initial period will tend toward the upper limit of six man
months. One estimate is that a good, experienced assembly
language programmer will generate only three to five lines of
code per hour. This estimate includes the time to plan the
program, write the instructions, enter them into the computer,
and debug the program. Code which is not used in the final program
is not included in the yield.

I estimate that I have spent 15 man months on the program,
spread out over a two year period. Deducting three months of
learning experience leaves 2,000 hours of productive programming.
The programs listed in Table XIIIA require 16,000 words of
memory, so I managed to f£ill eight words per hour. PDP-11
instructions require One; two, or three words of memory with the
average between 1.5 and two. This gives a net yield of four to
five instructions per hour. The programs in Table XIIIA contain
11,000 lines. Perhaps 10% of these are comments and other non-

code generating lines, so this estimate also gives five lines of
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code per hour.

Depending on ones other duties and how much already existing
code can be used, programming a small computer can easily take two
or three calendar years. Because of the learning curve and the
need to write certain general routines at the beginning, the
usefulness of the programming effort during the first year can
appear quite small. Some Fortran programs can be uséd during
this period to make the computer do a few jobs, and this was done
on the bubble chamber system. Because of memory limitations, the
functions of these Fortran subroutines were later coded in assembly
language. I would be happy to discuss interesting aspects of the
bubble chamber system with anyone planning a small computer
project at the Laboratory, and I urge any Laboratory Physicist
who does not have a permanent appointment to talk to me before
committing himself to such a project.

Hsi Feng has been responsible for much of the hardware, from
planning through the commissioning of the special hardware devices
(Table III), which has been vital to the success of this project.
Charles Mangene has done much of the work necessary to interface
the special devices to the computer. Many members of the bubble
chamber operating crew have helped to interface bubble chamber data
to the computer and contributed valuable suggestions. Jim Early
has assisted on several of the recent program improvements and

has taken over the computer system.
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* TABLE I - HARDWARE SUPPLIED BY FERMILAB COMPUTING DEPARTMENT
MANUFACTURER MODEL " DESCRIPTION
DEC PDP 11/20 Central Processor
DEC Extended Arithmetic Element
DEC KWll-P Programmable Real-Time Clock
DEC BM792-YB Auto Loader
DEC 8K Memory
Datacraft 20K Memory
DEC LA30 Decwriter terminal 30 characters/
second
DEC TCl1 Dec tape controller
DEC TUS56 Dual Dec tape drives
DEC TM11-A Magnetic tape controller
DEC TUl0-EA Magnetic tape transport, 9 track,
45 ips, 800 bpi
DEC RK11-CA Disk controller
DEC RKO5-AA 1.2 M word cartridge disk drive
Versatec 200A Printer/Plotter 600 lines/minute
DEC AA11A Tektronix scope control
DEC AA11D D/A subsystem for ahove
. DEC BA614 D/A converter (2) for above
Tektronix 6L3 Storage scope
Kinetic Systems KS0011.. CAMAC Crate Interface
Fermilab - Bison Interrupt and Gate Control

DEC DR11-C General purpose interface for above
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TABLE II - STORAGE DEVICES
Blocks* - DEVICE
112 Memory
4,800 Disk (RK1ll, RKO05)
1,156 Two Dectapes (TCll, TU56)
21,000 Magnetic Tape (TM1l, TU10)

* 1 block = 256 (16 bit) words
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* TABLE IIT SPECIALIZED HARDWARE ADDED FOR THE

MANUFACTURER

Datel S¥stems

Datel Systems
Datel Systems

TEC
DEC
Data Precision
Fermilab
DEC

Scanivalve
Standard Engin-
eering

Joerger

Joerger

Lecroy
Jordway
Fermilab

Fermilab

15* BUBBLE CHAMBER COMPUTER SYSTEM

MODEL

System 256

2561-PDP-11-1
2561-PDP-11-2

430
DL11E
3500

DR11-C
SSS 64 .CBM

1410
OR

DESCRIPTION

Fast AZD with 128 differential
inputs (inc. 8 samples & hold)
and 8 D/A outputs

Register interface for above

Direct Memory transfer inter-
face for above

CRT Terminal

Interface for above

Digital Voltmeter, 5 1/2 digits
Multiplexed input for above
Interface for above

Pneumatic Multiplexer for 3-15
psi signals

CAMAC Crate

CAMAC 48 Bit digital oubput
module (4)

CAMAC 48 Bit digital input
module (8)

CAMAC guad 100 MHz scalar module
CAMAC crate controller

Computer controlled addressing
for the gold chromel thermo-
couple system

Computer contxolled addressing
for the copper constantan ther-
mocouple system

(2)
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* TABLE IV GENERAL DATA DEVICES
DEVICE NUMBER DESCRIPTION POSSEI*BL’E; EUIBAQDRE_S_SES
1 Gold Chromel Thermocouple System 100
2 Copper Constantan Thermocouple System 100
3 Digital volt meter 64
4 Reserved for future DVM use -——
5 Fast Analog to Digital Converter 128
6 Air logic system Scanivalve 64
7 Not Used -—-

8 CAMAC digital input see text
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TABLE z DIGITAL VOLTMETER RANGES
DVM SUBADDRESS LEAST COUNT FULL SCALE
(octal) (uwv) (volts)
+
0XX 1000 +~ 11.999
2XX 100 3.2767
3XX 10 0.32767

1XX 1 : 0.032767
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TABLE VI SEOW AND FAST DATA STATUS BYTE CODES

DATA STATUS BYTE RESULT

0 Data point is not read in (no data
error code is put in its place)

1 Data point is read in but no con-
version to physical units is done.
The raw data value is transferred
to the final buffer, but it is not
included in the futher analysis
(derived quantities, partial sums
or limit checks)

2 All normal processing steps are done
on the data point, exeept no limit
checks are made.

3 All processing steps are done on
the data point.
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TABLE VII DISK BLOCKS USED TO DEFINE ONE BLOCK OF GENERAIL DATA

# OF BLOCKS USE STRUCTURE (words used for
each data point)
1 Read in control list High byte= device number
(Table IV)
low byte = subaddress
4 Convert raw data Control word,b,s,a (equ-
to physical units ation 1)
1+ Calculate derived String for each operation;
quantities subroutine number, output

location, input locations
or constants, #.

6 Store partial sums N (1 word), ¥ x (2 words),
T %% (3 words).

9 Limit Checks Control word, 4 sets of
lower and upper limits.

6 ID and format Format, label number, label
name (4 ASC II char.), units
(4 ASC II char.)
Total 2% #
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TABLE VIII EVENTS DURING CHAMBER PULSE
FOR WHICH TIMING IS RECORDED
BIT EVENT
0 Beam for A (Hadron) Experiment
1 Beam for B (Neutrino) Experiment
2 Light Flash Trigger
3 Data Box Trigger
4 Camera Trigger
5 Latch Valve open/closed
6 Recompression Valve open/closed
7 Expansion Valve closed (Open is start of

timing measurement).
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* TABLE ;_}_(_ ORGANIZATION QF_‘ THE DISK FILE BCDATA
RELATIVE BLOCK USE TYPE DATA DATA
NUMBERS STORED RETAINED
0-255 Control Tables, etc. - - -
(See Table X)
256-511 UNUSED - - -
512-767 Means, slow data M 2 hrs. 512 hrs.
768-1023 Std. Dev., slow data M 2 hrs. 512 hrs.
1024-1279 Means, fast data M 2 hrs. 512 hrs.
1286~1535 Std. Dev., fast data M 2 hrs. 512 hrs.

1536-1791 Means and Std. Dev.
Pulse % 0 M 2 hrs. 512 hrs.

1792-2027% Means and Std. Dev.
Pulse # 1 M 2 hrs. 512 hrs.

2048-2303 Means and Std. Dev.
Pulse # 2 M 2 hrs. 512 hrs.

2304-2559 Means and Std. Dev.

Pulse # 3 M 2 hrs. 512 hrs.
2560-2815 Slow Data Q 1/4 hrs. 64 hrs.
2816~3071 Fast Data 0 1/4 hrs. 64 hrs.
3072-3327 Slow Data A 1/16 hrs. 16 hrs.
3328-3583 Fast Data A 1/64 hrs. 4 hrs.
3584-4095 Pulse Data A PULSE 1024 Pulses
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TABLE X ONLINE PROGRAM CONTROL TABLES, ETC

BLOCK
NUMBER(s)

g
1-9

10

11-20

21

22-25

26

27-32

33-41

42-47

48-50
51

52-55

56

STORED ON THE DISK

NUMBER
OF BLOCKS

1

10

DESCRIPTION - FUNCTION

Latest general constants (read
in during program start up)

Other versions of general
constants

Latest general data status
bytes (read in during program
start up)

Unused, intended for other
versions of status bytes

Slow data read in control list

Conversion of raw slow data to
physical units

First block of control strings
to calculate slow data block
derived quantities

Partial sums to calculate
slow data means and standard
deviations

Slow Data limit checks

Slow Data ID and Formats
Unused

Fast data read in control list

Conversion of raw fast data to
physical units

First block of control strings
to calculate fast data block
derived quantities



Table X Con't

BLOCK

NUMBER (s)

57-62

63-71
72-77
78-80

81-92

93-99

100

162-105
106-129
130
131-142
143-185

186-199

200-249
250-255

NUMBER

OF BLOCKS

12

24

12
43
14

50

TM687
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DESCRIPTION~-- FUNCTION

Partial sums to calculate fast
data means and standard deviations

Fast Bata limit checks

Fast Data ID and formats

Unused

Partial sums to calculate pulse
data means and standard deviations,
three blocks each for pulse num-
bers 0,1,2, and 3.

Unused

Contents of CRT screen pulse
display pages

Pulse data titles and formats
Unused

Few variable summairy parameters
Few variable summary data
Unused

List specification continuation
blocks

First list specification blocks

Unused
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TABLE XI ORGANIZATION OF THE 256 WORD BLOCKS

A. All blocks contain:

1. Word 0
a). Bits 15-12, Code identifying type of
information

Code (Octal) Meaning
00 Control tables, constants tables, etc.
06 Means and Std. Dev. of slow data
07 Slow data
10 Few variable summary data
12 Means and Std. Dev. of fast data
13 Fast data
N Means and Std. Dev. of pulse data
17 Pulse data

b). Bits 11-0. Block numbery relative to the
start of BCDATA, where the information is
stored on the disk.

2. Word 1. Date = (Year - 1970)* 1000 + day of year

3. Word 2. High order time word

4. Word 3. Low order time word, where seconds since
midhight = g%‘ [aw « 32,768 + LT@]

5. Unless otherwise specified the remaining words
contain the data, control tables,etc.
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Table XI Con't

B. Pulse Data
1. Words 4-128. Data from one pulse
2. Words 129,130. Time of next pulse

3. Words 131-255. Data from next pulse

C. Means and Std. Dev. of Pulse Data
1. Words 4-128. Means

2. Words 131-255. Std. Dev.

D. Control 8tring to Calculate Derived Quantities
and List Specifications

1. Word 4. Link to next block

a). Nonzero. Block number, relative to start of
BCDATA, to use next

b). Zero. This is the last block to use for this
operation

2. Words 248-255. For the first list specification
block only, these words contain data block codes
specifying what data is to be used.
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TABLE XII ERROR CODES+

ERROR CODE

*0

*1
*2
*3
*4

*5

*6

*7

MEANING
No data. . .Pata was not read
or inputs for the calculation
were not available
Data was too big
Data was too small
Bad data from device

CAMAC error

Computer did not have control
of device subaddress.

Read in overrun. Not enough
time to read data

Control table error
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TABLE XIII ONLINE PROGRAM SOURCE FILES

Programs Written by the Author Specifically for

the Bubble Chamber System

FILE NAME

BCTAB.MAC

AUTC.MAC

CK8 .MAC

OUTCON .MAC

PDP.NMAC

MTR.MAC

SDR.MAC

LISTS.MAC

DATAP.MAC

DEV.MAEG

MEMORY WORDS

957

285

42

679

697

233

723

591

1,238

703

FUNCTION

BSX task table,
command tasks

clock and

Driver to read the gold chr-
omel thermocouple system

Prevents more that one task
from using KS001ll, repeats
operation if KS00ll inter-
rupted

Control of output to alpha-
numeric line devices

Task for real time display
of pulse data, control of
general buffers

Portion of mag tape control
task in main segment

Task to read in slow data
block

Portion
in main

of output list task
segment

Task for analysis of slow and

fast data; ecalculates means
and std. dev. for all data
blocks every two hours

Drivers for DVM, fast A/D
CAMAC digital input and
Scanivalve



TABLE XIII Con't
FILE NAME

11. PAP.MAC
12. PWP.MAC
13. DFIOHT.MAE
14. D1.MAC
15. CUTC.MAC
16. FDR.MAC
17. DKEDIT.MAC
18. CMDS.MAC
19. LOV.MAC
20. FVS.MAC

MEMORY WORDS
1,882

579

136

148

264

544

1,799

1,185

1,137

1,700

TM687
2628.000

FUNCTION

Pulse interrupt handler,
reads pulse data

Task to output pulse data
to disk. Also contains the
special start up code whose
memory is then used as a
general buffer

Driver to output (only)
on the Decwriter, dexived
from KBLOHT.

Pisk input=-output control
subroutine, overlay control

Driver to read the copper
constantan thermocepuple
systdm

Task to read in fast data
block

Editing of control and con-
stants tables on the disk,
set up of pulse display
pages on the CRT (in over-
lay 1)

Misc. commands, remainder
of mag tape control task
(in overlay 1)

Remainder of list task
(in overlay 1)

Makes the few variable
summaries, set up calls

to PLOTA for graphs on memory
scope, and calls HCOPY

(in overlay 2)
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TABLE XIII Con't
FILE NAME MEMORY WORDS FUNCTION
2L. GPRINT.MAC 685 Sets up calls to PLOTB

for graphs on the line
printer (in overlay 3)

B. Bison Programs Which Have Been Moderately Modified
for the Bubble Chamber Online Program

22. TRBIOHT.MAC 694 Driver for CRT terminal”

23. FMTPUT.MAC 471 Formatter for line alapha-
numeric output!?

C. Bison Programs Used With Little or no Modification

24. BXSCAN,etc 1,370 BSX supervigor, including
links to standard devices®

25. CKINLT, etc 117 Clock interrupt set up .and
handler!?®

26. CICONV,PAL 246 Command interpreter?

27. KS00ll.PAL 296 CAMAC driver!?

28. VTINIT,etc 609 Subroutines used by PLOTA,
mostly in overlay?

29, ISORT.PAL 130 Calculates interger square
roots

30. BCDBIN.PAL 50 Converts BCD to binary

31. PLOTA.PAL 1,351 Blots graphs on the

memory scope (in overlay 2

32. HCOPY.PAL 114 Transfers graph from the
memory scope to the line
printer (in overlay 2)*%



TABLE XIII Con't

FILE NAME

33. PLOTB.PAL

D. DEC DOS

34. ODT

35. JLOAD,etc

MEMORY WORDS

3,284

Programs3

1,534

292
2,655
1,353

TM687
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FUNCTION

Plots graphs on the line
printer (in overlay 3)

Program debugging, space
used for general buffers
unless ODT needed

Read in overlay segments

Resident monitor

"Monitor buffers", mostly
device drivers

E. Large Buffers of Data Storage (not included above)

36’ ———————
37. ——————-
38. BBCD
39. TCDAT

40. PDP.MAC

41. PAP.MAC

42. SDR.MAC

264

512

512

1,440

256

< 3,584

Constahts and control
for PAP, general con-
stants

Latest values, slow and
fast dakta blocks

Two general bufifers
(available at program
start up)

Input and output buffers
for pulde data

Status bytes for data in
slow and fast blocks

Up to 14 general buffers
assigned at program start

up
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TABLE XIII Con't

TOTALS
A 16,207
B 1,165
Cc 7,567
D (Less ODT) 4,300
E 6,568
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* TABLE XIV MEMORY USE FOR ONLINE PROGRAM WHEN
RUNNING WITHOUT ODT (NUMBERS REFER TO ENTRIES IN TABLE XIII)

MEMORY WORDS USE
2655 DOS monitor (36)
1353 Monitor buffers, mostly device

drivers (37)

2345 BSX supervisor, including task
table, links to drivers, and spe-
cial drivers for CRT terminal and
Decwriter (1,13,22,24)

4121 Overlay area. Display, disk bklock
editing, mag tape initialization,
misc. commands (0V1:17,18,19),
(0v2:20,28,31,32), (0vV3:21,33)

4486 Read in, analysis, bogging, -and
real time display of pulse data
(5,11,12,38,41)

5043 Read in, analysis and logging of

fast and slow data, including
device drivers: (2,3,7,9,10,15,
16,27,29,30,39,42)

591 Portion ef list task in main seg-
ment, mostly to find and read in
desired data from disk. (8}

1199 Control and formatting for line
alphanumeric output devices (4,
23,28)
619 Command input and conversion
(1,26)
556 Clock task and clock interrupt

handler (1,258)



TABLE XIV Con't

MEMORY WORDS

373
67
233

120
4352
559

28672

TM687
2628.000

USE
Overlay control and read in (14,35)
Disk I/O control (14)

Portion of mag tape task in main
segment (6)

General buffer control (5)
17 General buffers (12,40,43)

Unused memory

Total (=28K)
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FIGURE CAPTIONS

Schematic diéagram of the liquid Helium flow to the superconduct-

ing magnet.

(a) Program steps for the read in of data during the bubble
chamber pulse. (b) The computer beam track gates near beam
time. In each case, the curve shows the pressure inside the

chamber.

Pressure vs. volume diagram of one bubble chamber pulse. The
area inside the curve is the work done on the chamber ligquid

done by the expansion system.

List of the gold chromel thermocouples during a chamber cool-
down. Temperatures are given inbdegrees Kelvin. Note that
both 15 minute and 60 minute rates are given; by comparing
these two, the operator can tell whether the cooldown rate is

increasing, decreasing, or remaining constant.

List of data concerning bubble chamber temperatures, cooling
loops and expansion system during the heavy neon-hydrogen run.
In this case, the mean of all readings between 0200-0400 on

24 May 1976 is given. The standard deviation (sigma) of each

reading during the two hour period and the rate of change of the
means with respect to the means for the previous two hour period

are also given.
List of the data read into the slow data block every 1/16 hour.

List of the data read into the fast data block every 1/64 hour.
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Figure Captions
—_D -

List of the data read every chamber pulse.

Copy of a page display of pulse data on the CRT terminal screen.
This page shows hadron beam timing using simulated data during

a period when the bubble chamber was not running.

Typical operator commands needed to make a few variable summary,
plot some of that data on the memory scope, make hard copy on

the line printer from the memory scope, and to plot data directly
on the line printer. The commands shown were actually used to

make Figures 11, 12, 14 and 16.

Sample of a few variable summary list. Variables shown here
are:

1. Hydrogen storage dewar pressure

2. Hydrogen storage dewar vent valve % open

3. Neon-hydrogen storage dewar pressure

. Neon~hydrogeh storage dewar condenser hydrogen level

5. Neon-hydrogen storage dewar condenser supply valve % open
6. Neon-hydrogen storage dewar dondenser vent valve % open

Graph of variable 1, PFigure 11 vs. time. This graph was originally
plotted on the memory scope with good resolution, but details

were lost when it was hard copied on the line printer.

Graph of the liquid hydrogen storage dewar level vs. time for a
two day period. Points are the means of all readings during a
two hour interval and error bars are the standard deviations of
the readings during that period. The figure was:hard copied

from the memory scope to the line printer.
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Figure Captions
_3_
Four small graphs of variables vs. time, hard copied from the
memory scope to the line printer. Clockwise, starting from

the upper left, the variables are 1, 3, 6, 2 of Figure 11.

Scatter plot of one variable vs. another hard copied from the
memory scope to the line printer. The x axis is the hydrogen
storage dewar pressure and the y axis is the vent wvalve which
relieves this pressure. The plot shows the action of the air

controller which varies the vent wvalve to control dewar

pressure. The data of Figures 11, 12 and 14 are included here,

but a longer time interval, covering several control cycles, was

chosen for the plot.

The same data as Figure 12, but plotted directly on the line

printer.

The same data as Figure 13, but plotted directly on the line

printer.
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AT 62.06.88 24-MAY-FE  MEAHS
CHAMBER TEMF IH PZIa
TI MEAGM SIGHA 2ZHR B
CHaMBER avwG, TOP 3241 181,32 S.82 ~-8.61
BELOW D. JBCKET 487 182. .22 5.18 -8.13
2’ ABOYE E2UATOR 482 37, 8% 1.82 -8B.38
ABOYE PISTOH 489 188, 92 *G A Bz
PISTOH SEALS 218 =24 43 .82 -3 61
Z SECT. TOP, BOT 4286 £ 351 *5 #5
AYERGGE 424-4825 2362 2.34 =89 52 R
EXPAMSION SYSTENM IN FPEIG
: PSS MEAM SIGHA 2HR R
DRIVE, EBOUHCER 255 1114.5 2.8 -5, &
CHAMEBER LOOP VALVES * 0OPEHM :
BUBEBLE, MAIM 168 2.5 4.8 -3, 2
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DEYICE UHITS HMERH SIGHMA 2HR R DEYICE
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FUMP LOOP
TIC 163 SPEC 4.18 B.2g -8.82 L PY 183
DPT &13F PsID 13,29 a. 88 8. 859 FI 348
PLEHUM LOOPF
FT 154 PSID 22,29 .86 -§.8z2 PY 164
REFRIGERATION ,
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CHAMBER »
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